Издателям
Вышедшие номера
Computational design of multi-states monomolecular device using molecular hydrogen and C20 isomers
Darvish Ganji M.1
1Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
Email: ganji_md@yahoo.com
Поступила в редакцию: 20 мая 2015 г.
Выставление онлайн: 19 июня 2016 г.

We perform detailed calculations for the interaction of molecular hydrogen with C20 isomers in the framework of density functional theory method. The adsorption of H2 outside the C20-e isomer with parallel orientation with respect to the plane of the hexagon is found to be the most stable adsorption configuration. Thus this might have potential for the hydrogen storing. We have also investigated the number and the position of adsorption sites in the pentagon for the parallel configurations of the H2/C20 systems. We find two stable configurations of the molecule for the C20-bowl isomer that have a small difference in energy. Thus, surprisingly, despite their apparent simplicity these H2/C20-bowl systems are shown to exhibit the flip-flop motion by a small current pulse. Hence, it might be a candidate for multi-states monomolecular device. Convenient experimental techniques such as field emission microscopy are proposed to test these predictions. This work was supported by the Azad University of Qaemshahr.
  1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature 318, 162 (1985)
  2. S. Iijima. Nature 354, 56 (1991)
  3. C. Piskoti, J. Yarger, A. Zettl. Nature 393, 771 (1998)
  4. R.E. Smalley. Acc. Chem. Res. 25, 98 (1992)
  5. J. Hunter, J. Fye, M.F. Jarrold. J. Phys. Chem. 97, 3460 (1993)
  6. C. Rohlfing, J. Kaldor. Chem. Phys. Lett. 81, 3322 (1984)
  7. W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman. Nature 347, 354 (1990)
  8. F. Diederich, R.L. Whetten. Acc. Chem. Res. 25, 119 (1992)
  9. S. Iijima, T. Ichihashi. Nature 363, 603 (1993)
  10. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers. Nature 363, 605 (1993)
  11. R.S. Ruoff, D.C. Lorents, B. Chan, R. Malhotra, S. Subramoney. Science 259, 346 (1993)
  12. Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita, T. Hayashi. Chem. Phys. Lett. 204, 277 (1993)
  13. T. Oku, T. Hirano, M. Kuno, T. Kusunose, K. Niihara, K. Suganuma. Mater. Sci. Eng. B 74, 206 (2000)
  14. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen. Nature 388, 451 (1997)
  15. K. Sattler. Carbon 33, 915 (1995)
  16. Y. Saito, T. Matsumoto. Nature 392, 237 (1998)
  17. Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, K. Sumiyama, K. Suzuki, A. Kasuya, Y. Nishina. J. Phys. Chem. Solids 54, 1849 (1993)
  18. D. Ugarte. Nature 359, 707 (1992)
  19. M.S. Dresselhause, G. Dresselhaus, P.C. Eklund. Science of fullerenes and carbon nanotubes. Academic Press, N.Y. (1996)
  20. O. Gulseren, T. Yildirim, S. Ciraci. Phys. Rev. Lett. 87, 116 802 (2001)
  21. J.A. Alonso, J.S. Arellano, L.M. Molina, A. Rubio, M.J. Lopez. IEEE Trans Nanotechnol. 3, 304 (2004)
  22. A.C. Dillon, K.M. Jones, T.A. Bekkeduhl, C.H. Kiang, D.S. Bethune, M.J. Heben. Nature 386, 377 (1997)
  23. J.S. Arellano, L.M. Molina, A. Rubio, M.J. Lopez, J.A. Alonso. J. Chem. Phys. 117, 2281 (2002)
  24. T. Takenobu, M. Shiraishi, A. Yamada, M. Ata, H. Kataura, Y. Iwasa. Synth. Met. 135, 787 (2003)
  25. R.E. Haufler, J. Conceicao, L.P.F. Chibante, Y. Chai, N.E. Byrne, S. Flanagan, M.M. Haley, S.C. O'Brien, C. Pan, Z. Xiao, W.E. Billups, M.A. Ciufolini, R.H. Hauge, J.L. Margrave, L.J. Wilson, R.F. Curl, R.E. Smalley. J. Phys. Chem. 94, 8634 (1990)
  26. G. Seifert. Solid State Ionics 168, 265 (2004)
  27. L. Turker, S. Erko. J. Mol. Struct.: Theochem 638, 37 (2003)
  28. B.I. Dunlap, D.W. Brenner, J.W. Mintmire, R.C. Mowrey, C.M.T. White. J. Phys. Chem. 95, 5763 (1991)
  29. G.E. Scuseria. Chem. Phys. Lett. 176, 423 (1991)
  30. H.W. Kroto. Int. J. Mass Spectrom. Ion Process 138, 1 (1994)
  31. A. van Orden, R.J. Saykally. Chem. Rev. 98, 2313 (1998)
  32. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L.T. Scott, M. Gelmont, D. Olevano, B. Issendorff. Nature 407, 60 (2000)
  33. M. Saito, Y. Miyamoto. Phys. Rev. Lett. 87, 035 503 (2000)
  34. S. Waki, K. Hata, H. Sato, Y. Saito. J. Vac. Sci. Technol. B 25, 517 (2007)
  35. M.D. Ganji. Nanotechnology 19, 025 709 (2008)
  36. J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996)
  37. P. Ordejon, E. Artacho, J.M. Soler. Phys. Rev. B 53, 10 441 (1996)
  38. J.M. Soler, E. Artacho, J.D. Gale, A. Garcya, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens Matter 14, 2745 (2002)
  39. J.S. Arellano, L.M. Molina, A. Rubio, J.A. Alonso. J. Chem. Phys. 112, 8114 (2000)
  40. I. Cabria, M.J. Lopez, J.A. Alonso. Eur. Phys. J. D 34, 279 (2005)
  41. M.D. Ganji. Phys. Lett. A 372, 3277 (2008)
  42. M.D. Ganji, A. Mirnejad, A. Najafi. Sci. Technol. Adv. Mater. 11, 045 001 (2010)
  43. M. Darvish Ganji, M. Mohseni, A. Bakhshandeh. J. Mol. Model 19, 1059 (2013)
  44. M. Darvish Ganji, S.M. Hosseini-khah, Z. Amini-tabar. Phys. Chem. Chem. Phys. 17, 2504 (2015)
  45. M.D. Ganji. Physica E 41, 1433 (2009)
  46. M.D. Ganji, M. Mohseni, O. Goli. J. Mol. Struct.: Theochem 913, 54 (2009)
  47. M.D. Ganji. Fulleren. Nanotubes Carbon Nanostruct. 18, 24 (2010)
  48. M.D. Ganji, M. Rezvani, M. Shokry, A. Mirnejad. Fulleren. Nanotubes, Carbon Nanostruct. 19, 421 (2011).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.