Оптимизация физико-механических свойств ультрамелкозернистого сплава Al-Mg-Zr электротехнического назначения
Орлова Т.С.
1, Садыков Д.И.
1, Кириленко Д.А.
1, Лихачев А.И.
1, Левин А.А.
11Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

Email: orlova.t@mail.ioffe.ru
Поступила в редакцию: 3 марта 2025 г.
В окончательной редакции: 12 марта 2025 г.
Принята к печати: 13 марта 2025 г.
Выставление онлайн: 23 апреля 2025 г.
Для ультрамелкозернистого (УМЗ) сплава Al-0.95Mg-0.32Zr (wt.%), структурированного методом кручения под высоким давлением (КВД), достигнута уникальная комбинация свойств прочности (390 MPa), пластичности (~10%) и электропроводности (~49% IACS - International Annealed Copper Standard) за счет дополнительной деформационно-термической обработки (ДТО), состоящей из отжига при повышенной температуре 230 oC в течение 1 h и небольшой дополнительной деформации КВД. Исследована эволюция микроструктуры на обеих стадиях ДТО. Анализ соотношения микроструктура-свойства показал, что достигнутая пластичность обеспечена введением в результате ДТО дополнительной плотности дислокаций в релаксированную отжигом структуру границ зерен (ГЗ) и приграничные области, а также формированием значительной доли (~20%) более крупных зерен с размером ≥900 nm в УМЗ-структуре. Сохранение после ДТО прочности на уровне ~75% от прочности в исходном УМЗ-состоянии можно объяснить сохранением малого среднего размера зерна (510 nm) и формированием новых сегрегаций Mg на ГЗ. Ключевые слова: алюминиевые сплавы, ультрамелкозернистая структура, прочность, пластичность, границы зерен, сегрегация, дислокации.
- M.Yu. Murashkin, N.A. Enikeev, X. Sauvage. Mater. Trans. 64, 8, 1833 (2023)
- R.Z. Valiev, M.Y. Murashkin, I. Sabirov. Scripta Materialia 76, 13 (2014)
- T. Knych, M. Piwowarska, P. Uliasz. Arch. Met. Mater. 56, 685 (2011)
- Д.И. Белый. Кабели и провода 332, 8 (2012)
- ASTM B941-16, Standard Specification for Heat Resistant Aluminum Zirconium Alloy Wire for Electrical Purposes. ASTM International: West Conshohocken, PA (2016)
- P.H.L. Souza, C.A. Silva de Oliveira, J.M. do Vale Quaresma. Mater. Res. Technol. 7, 1, 66 (2018)
- K.E. Knipling, D.C. Dunand, D.N. Seidman. Int. J. Mater. Res. 97, 3, 246 (2022)
- Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon. Metall. Metal. Trans. A 29, 10, 2503 (1998)
- J. Gubicza, N.Q. Chinh, Z. Horita, T.G. Langdon. Mater. Sci. Eng. A 387-389, 55 (2004)
- T.S. Orlova, T.A. Latynina, M.Y. Murashkin, F. Chabanais, L. Rigutti, W. Lefebvre. J. Alloys Compd. 859, 157775 (2021)
- M.Y. Murashkin, A.E. Medvedev, V.U. Kazykhanov, G.I. Raab, I.A. Ovid'ko, R.Z. Valiev. Rev. Adv. Mater. Sci. 47, 1/2, 16 (2016)
- T.S. Orlova, A.M. Mavlyutov, D.I. Sadykov, N.A. Enikeev, M.Yu. Murashkin. Metals 13, 9, 1570 (2023)
- А.М. Мавлютов, Т.С. Орлова, М.Ю. Мурашкин, Н.А. Еникеев, Д.А. Кириленко. Физическая Мезомеханика, 28, 1, 5 (2025)
- Д.И. Садыков, М.Ю. Мурашкин, Д.А. Кириленко, А.А. Левин, А.И. Лихачев, Т.С. Орлова. ФТТ 66, 6, 933 (2024)
- DIFFRAC.EVA. Version 5.1.0.5. Bruker AXS, Karlsruhe, Germany (2019)
- Powder Diffraction File-2, International Centre for Diffraction Data (ICDD). Newton Square, PA, USA (2014)
- C. Maunders, J. Etheridge, N. Wright, H.J. Whitfield. Acta Crystallographica B 61, Part 2, 154 (2005)
- A.A. Levin. Preprint (2022). https://doi.org/10.13140/RG.2.2.15922.89280
- B. Terlan, A.A. Levin, F. Borrnert, F. Simon, M. Oschatz, M. Schmidt, R. Cardoso-Gil, T. Lorenz, I.A. Baburin, J.-O. Joswig, A. Eychmuller. Chem. Mat. 27, 14, 5106 (2015)
- B. Terlan, A.A. Levin, F. Borrnert, J. Zeisner, V. Kataev, M. Schmidt, A. Eychmuller. Eur. J. Inorg. Chem. 2016, 21, 3460 (2016)
- G.K. Williamson, R.E. Smallman. Philos. Mag. 1, 1, 34 (1956)
- K. Edalati, N. Enikeev. Mater. 17, 24, 6189 (2024)
- J.P. Hirth, J. Lothe. Theory of Dislocations. McGraw-Hill, N.Y. (1968). 780 р
- T.S. Orlova, D.I. Sadykov, D.V. Danilov, M.Y. Murashkin. J. Alloys Compd. 931, 167540 (2023)
- M. Zha, H. Zhang, H. Jia, Y. Gao, S. Jin, G. Sha, R. Bj rge, R.H. Mathiesen, H.J. Roven, H. Wang, Y. Li. Int. J. Plast. 146, 103108 (2021)
- J.E. Hatch. Aluminum: Properties and Physical Metallurgy, 1st ed. ASM International, Metals Park, OH (1984)
- Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M.Yu. Murashkin, R.Z. Valiev, H. Zhou. Scripta Materialia 159, 137 (2019)
- X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin. Acta Materialia 72, 125 (2014)
- M.P. Liu, H.J. Roven, M.Yu. Murashkin, R.Z. Valiev, A. Kilmametov, Z. Zhang, Y. Yu. J. Mater. Sci. 48, 13, 4681 (2013)
- X. Sauvage, A. Ganeev, Yu. Ivanisenko, N. Enikeev, M. Murashkin, R. Valiev. Adv. Eng. Mater. 14, 11, 968 (2012)
- I. Sabirov, M.Yu. Murashkin, R.Z. Valiev. Mater. Sci. Eng. A 560, 1 (2013)
- Y. Zhang, S. Jin, P. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, G. Sha. Mater. Sci. Eng. A 752, 223--232 (2019)
- N. Kamikawa, X. Huang, N. Tsuji, N. Hansen. Acta Materialia 57, 14, 4198 (2009)
- H. Asgharzadeh, A. Simchi, H.S. Kim. Mater. Sci. Eng. A 528, 12, 3981 (2011)
- E.O. Hall. Proceed. Phys. Soc. B. 64, 9, 747 (1951)
- N.J. Petch. J. Iron Steel Inst. 174, 25 (1953)
- G.E. Totten, D.S. MacKenzie. Handbook of Aluminium. Marcel Dekker, NY (2003). 1310 р
- M. Zha, H.-M. Zhang, X.-T. Meng, H.-L. Jia, S.-B. Jin, G. Sha, H.-Y. Wang, Y.-J. Li, H.J. Roven. J. Mater. Sci. Tech. 89, 141 (2021)
- F.R.N. Nabarro, Z.S. Basinski, D.B. Holt. Adv. Phys. 13, 50, 193 (1964)
- N. Hansen, X. Huang. Acta Materialia 46, 5, 1827 (1998)
- O.R. Myhr, O. Grong, S.J. Andersen. Acta Materialia 49, 1, 65 (2001)
- K.E. Knipling, D.C. Dunand, D.N. Seidman. Acta Materialia 56, 1, 114 (2008)
- H.-J. Lee, J.-K. Han, S. Janakiraman, B. Ahn, M. Kawasaki, T.G. Langdon. J. Alloys Compd. 686, 998 (2016)
- Y. Chen, N. Gao, G. Sha, S.P. Ringer, M.J. Starink. Mater. Sci. Eng. A 627, 10 (2015).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.