Вышедшие номера
Электрохимические характеристики электродных материалов на основе полианилина и многостенных углеродных нанотрубок, декорированных оксидом марганца
Российский научный фонд, № 23-22-10030, https://rscf.ru/project/23- 22-10030/
Лобов И.А. 1, Давлеткильдеев Н.А. 1, Несов С.Н. 1
1Омский научный центр Сибирского отделения Российской академии наук, Омск, Россия
Email: LI__87@mail.ru, nesov55@mail.ru
Поступила в редакцию: 12 мая 2023 г.
В окончательной редакции: 7 августа 2023 г.
Принята к печати: 30 октября 2023 г.
Выставление онлайн: 6 декабря 2023 г.

Методами циклической вольтамперометрии и гальваностатического циклирования исследованы электрохимические характеристики композитов полианилина с многостенными углеродными нанотрубками (исходными и декорированными оксидом марганца). Композиты синтезировали методом in-situ химической окислительной полимеризации анилина в рениевой кислоте. Композит, содержащий оксид марганца, показал более высокие значения удельной емкости (308 против 238 F/g при 1 A/g) и лучшую характеристику саморазряда (падение напряжения 5% против 20% за 1 h). После 1000 циклов заряда/разряда удельная емкость обоих композитов снижается на 13% из-за неполной обратимости окислительно-восстановительных реакций лейкоэмералдин/эмералдин. Ключевые слова: полианилин, углеродные нанотрубки, оксид марганца, композиты, суперконденсаторы.
  1. I.V. Panasenko, M.O. Bulavskiy, A.A. Iurchenkova, Y. Aguilar-Martinez, F.S. Fedorov, E.O. Fedorovskaya, B. Mikladal, T. Kallio, A.G. Nasibulin. J. Power Sources 541, 231691 (2022). DOI: 10.1016/j.jpowsour.2022.231691
  2. H.N. Heme, M.S.N. Alif, S.M.S.M. Rahat, S.B. Shuchi. J. Energy Storage 42, 103018 (2021). DOI: 10.1016/j.est.2021.103018
  3. Yu.M. Volfkovich. Russ. J. Electrochem. 57, 4, 311 (2021). DOI: 10.1134/S1023193521040108
  4. J. Iqbal, M.O. Ansari, A. Numan, S. Wageh, A. Al-Ghamdi, M.G. Alam, P. Kumar, R. Jafer, S. Bashir, A.H. Rajpar. Polymers 12, 12, 2918 (2020). DOI: 10.3390/polym12122918
  5. S. Khamsanga, M.T. Nguyen, T. Yonezawa, P.T.R. Pornprasertsuk, P. Pattananuwat, A. Tuantranont, S. Siwamogsatham, S. Kheawhom. Int. J. Mol. Sci. 21, 13, 4689 (2020). DOI: 10.3390/ijms21134689
  6. J. Zhu, D. Zhang, Z. Zhu, Q. Wu, J. Li. Ionics 27, 9, 3699 (2021). DOI: 10.1007/s11581-021-04139-1
  7. P.M. Korusenko, S.N. Nesov. Appl. Sci. 12, 12827 (2022). DOI: 10.3390/app122412827
  8. V.V. Abalyaeva, O.N. Efimov, N.N. Dremova, E.N. Kabachkov. Russ. J. Electrochem. 57, 10, 996 (2021). DOI: 10.1134/S1023193521080036
  9. S.N. Karri, S.P. Ega, V. Perupogu, P. Srinivasan. Chem. Select 6, 2576 (2021). Doi.org/10.1002/slct.202100513
  10. F.C.R. Ramirez, P. Ramakrishnan, Z.P. Flores-Payag, S. Shanmugam, C.A. Binag. Synthetic Metals 230, 65 (2017). DOI: 10.1016/j.synthmet.2017.05.005
  11. Z. Wang, X. Chu, Z. Xu, H. Su, F. Liu, B. Gu, H. Huang, D. Xiong, H. Zhang, W. Deng, H. Zhang. J. Mater. Chem. A 7, 8633 (2019). DOI: 10.1039/c9ta01028a