Резонансное косвенное обменное взаимодействие между локализованными спиновыми состояниями в 3D дираковском полуметалле
Горюнов Ю.В.
11ФИЦ "Казанский научный центр РАН", Казань, Россия
Email: gorjunov@kfti.knc.ru
Поступила в редакцию: 9 августа 2023 г.
В окончательной редакции: 8 октября 2023 г.
Принята к печати: 9 октября 2023 г.
Выставление онлайн: 1 ноября 2023 г.
Рассматривается вопрос об обменном взаимодействии локализованных спиновых состояний примесей Eu в дираковском полуметалле α-Cd3As2 через донорные электроны, происходящие от этих примесей. Находясь в состоянии химического сжатия, двухвалентный ион европия склонен, отдавая электрон в зону проводимости, переходить в трехвалентное состояние с меньшим ионным радиусом. Однако европий находится в немагнитном трехвалентном состоянии лишь небольшую часть времени. Это приводит к небольшому уменьшению его эффективного локального магнитного момента и увеличению g-фактора вследствие взаимодействия с дираковскими электронами. Изменение степени химического сжатия с изменением температуры объясняет ранее наблюдаемые температурные зависимости g-фактора и ширины линий ЭПР для примесных ионов Eu2+ (g~ 2.2 и g~ 4.4). Все вместе это указывает на наличие селективного по кристаллографической позиции косвенного обменного взаимодействия через донорные электроны проводимости между локализованными спинами ионов Eu2+. Ключевые слова: магнитный резонанс, дираковские полуметаллы, магнитные примеси, обменное взаимодействие.
- P.W. Anderson. Phys. Rev. 124, 41 (1961)
- M.A. Ruderman, C. Kittel. Phys. Rev. 96, 99 (1954)
- N. Bloembergen, T.J. Rowland. Phys. Rev. 97, 1679 (1955)
- I.Ya. Korenblit, E.F. Shender. Phys.-Usp. 21, 832 (1978)
- G.G. Khaliullin, B.I. Kochelaev. Phys. Lett. A 106, 318 (1984)
- T.S. Altshuler, Yu.V. Goryunov, M.S. Bresler. Phys. Rev. 73, 235210 (2006)
- Hao-Ran Chang, Jianhui Zhou, Shi-Xiong Wang, Wen-Yu Shan, Di Xiao. Phys. Rev. B 92, 241103(R) (2015)
- Yu.V. Goryunov, A.N. Nateprov. Phys. Solid State 60, 68 (2018)
- S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buchner, R.J. Cava. Phys. Rev. Lett. 113, 027603 (2014)
- Mazhar N. Ali, Q. Gibson, S. Jeon, B.B. Zhou, A. Yazdani, R.J. Cava. Inorg. Chem. 53, 4062 (2014)
- C.Y. Maghfiroh, A. Arkundato, Misto, W. Maulina. J. Phys. Conf. Ser. 1491, 012022 (2020)
- R.K. Wangsness. Phys. Rev. 91, 1085 (1953)
- J. Feng, Yu. Pang, D. Wu, Zh. Wang, H. Weng, J. Li, X. Dai, Zh. Fang, Yo. Shi, L. Lu. Phys. Rev. B 92, 081306(R) (2015)
- I.V. Rozhansky, I.V. Krainov, N.S. Averkiev, B.A. Aronzon, A.B. Davydov, K.I. Kugel, V. Tripathi, E. Lahderanta. Appl. Phys. Lett. 106, 252402 (2015)
- K.S. Nemkovski, D.P. Kozlenko, P.A. Alekseev, J.-M. Mignot, A.P. Menushenkov, A.A. Yaroslavtsev, E.S. Clementyev, A.S. Ivanov, S. Rols, B. Klobes, R.P. Hermann, A.V. Gribanov. Phys. Rev. B 94, 195101 (2016)
- A.O. Sboychakov, K.I. Kugel, A.L. Rakhmanov. Phys. Rev. B 76, 195113 (2007)
- К.И. Кугель, Д.И. Хомский. УФН 136, 621 (1982)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.