Вышедшие номера
Х-ray Study and Computer Simulation of the Structure of Amorphous-Crystalline Titanite
Sidorova O.V.1, Aleshina L.A.1, Fofanov A.D.2
1Department of Solid State Physics, Petrozavodsk State University, Petrozavodsk, Republic of Karelia, Russian Federation
2Karelian Research Centre at Russian Academy of Sciences, Petrozavodsk, Republic of Karelia, Russian Federation
Email: solvak@petrsu.ru
Поступила в редакцию: 2 сентября 2021 г.
Выставление онлайн: 16 ноября 2021 г.

The structure of amorphous-crystalline titanite obtained by mechanical activation was studied by X-ray diffraction and simulation methods. The short-range order characteristics were calculated using Finbak-Warren's method. It was found that the coordination numbers of metal atoms decreased as the result of titanite grinding. The atomic configurations of short-range order of ground titanite were constructed by translation of titanite unit cell. The theoretical X-ray patterns were calculated using Debye's method and were compared with the experimental curves. The structure of ground titanite in the mill with centrifugal factor 40 g was described satisfactorily by the model of mechanical mixture of clusters containing 2016 atoms, disordered during the molecular dynamics with clusters containing 12096 atoms. The increase of grinding intensity led to the sharp decrease of sizes of small cluster. Ключевые слова: amorphous-crystalline titanite, X-ray diffraction, computer simulation, mechanical activation, Debye's method.
  1. L.G. Gerasimova, M.V. Maslova, E.S. Shchukina. Russ. J. Appl. Chem. 83, 12, 2081 (2010). DOI: 10.1134/S1070427210120037
  2. J. Maletaskic, B. Matovic, N. Stankovic, M. Prekajski-Djordjevic, J. Lukovi'c, K. Yoshida, T. Yano. Energy Procedia 131, 407 (2017). DOI: 10.1016/j.egypro.2017.09.457
  3. E.W. Awin, B. Matovic, J. Maletav skic, V. Urbanovich, R. Kumar. Process. Appl. Ceram. 10, 4, 295 (2016). DOI: 10.2298/PAC1604295A
  4. A.M. Kalinkin, E.V. Kalinkina, T.N. Vasil'eva. Colloid J. 66, 2, 160 (2004). DOI: 10.1023/B:COLL.0000023116.75353.f0
  5. A. Amirjani, M. Hafezi, A. Zamanian, M. Yasaee, N. Azuan Abu Osman. J. Adv. Mater. Process. 4, 2, 56 (2016)
  6. L.G. Gerasimova, V.V. Tyukavkina. Fundamental Res. 2, 10, 2083 (2015). (in Russian)
  7. T. Stoyanova-Lyubenova, F. Matteucci, A. Costa, M. Dondi, J. Carda. Powder Technol. 193, 1, 1 (2009). DOI: 10.1016/j.powtec.2009.01.020
  8. S. Cheng, D. Wei, Y. Zhou. Appl. Surf. Sci. 257, 8, 3404 (2011). DOI: 10.1016/j.apsusc.2010.11.034
  9. L. Nasdala, T. Stoyanova-Lyubenova, M. Gaft, M. Wildner, W. Diegor, C. Petautschnig, D. Talla, C. Lenz. Chem. Erde 74, 3, 419 (2014). DOI: /10.1016/j.chemer.2014.04.004
  10. T. Beirau. Z. Kristallographie --- Crystalline Mater. /229, 8, 543 (2014). DOI: 10.1515/zkri-2014-1745
  11. T. Beirau, U. Bismayer, B. Mihailova, C. Paulmann, L. Groat. Phase Transitions 83, 9, 694 (2010). DOI: /10.1080/01411594.2010.502875
  12. T. Beirau. PhD Thesis, Fachbereich Geowissenschaften der Universitat Hamburg, Hamburg (2012). 102 p
  13. S.J.L. Billinge. Phil. Trans. R. Soc. A 377, 2147, 20180413 (2019). DOI: 10.1098/rsta.2018.0413
  14. O.V. Sidorova, L.A. Aleshina, D.S. Krupyanskiy. Int. J. Mineral Proc. 169, 119 (2017). DOI: 10.1016/j.minpro.2017.11.001
  15. E.G. Avvakumov. Mekhanicheskie metody aktivatsii khimicheskikh protsessov (Mechanical Activation of Chemical Processes), Nauka, Novosibirsk (1989). 306 p. (in Russian)
  16. V.B. Zlokazov, V.V. Chernyshev. J. Appl. Crystallogr. 25, Part 3, 447 (1992). DOI: 10.4028/www.scientific.net/MSF.79-82.283
  17. O. Borgen, C. Finbak. Acta Chem. Scand. 8, 829 (1954). DOI: 10.3891/acta.chem.scand.08-0829
  18. B.E. Warren. X-ray diffraction. Addison-Wesley, Reading, MA (1969). 381 p
  19. R.L. Mozzi, B.E. Warren. J. Appl. Cryst. 2, 4, 164 (1969). DOI: 10. 1107/S0021889869006868
  20. R.L. Mozzi, B.E. Warren. J. Appl. Cryst. 3, 4, 251 (1970). DOI: 10.1107/S0021889870006143
  21. B.E. Warren. Chem. Rev. 26, 2, 237 (1940). DOI: 10.1021/cr60084a007
  22. L.A. Aleshina, V.P. Malinenko, A.D. Phouphanov, N.M. Jakovleva. J. Non-Cryst. Solids 87, 3, 350 (1986). DOI: 10.1016/S0022-3093(86)80008-4
  23. L.A. Aleshina, A.D. Fofanov. X-ray Structural Analysis of Amorphous Materials. PetrSU, Petrozavodsk (1987). 85 p
  24. N.S. Skorikova, D.V. Loginov, O.V. Sidorova, A.D. Fofanov, E.F. Kudina. Glass Phys. Chem. 44, 6, 575 (2018). DOI: 10.1134/S1087659618060202
  25. G.E. Forsythe, M.A. Malcolm, C.B. Moler. Computer Methods for Mathematical Computations. Englewood Cliffs: Prentice Hall (1977). 259 p
  26. C.L. Lawson, R.J. Hanson. Solving Least Squares Problems. Philadelphia: SIAM (1995). 337 p
  27. D.V. Lobov, A.D. Fofanov, R.N. Osaulenko, A.M. Kalinkin. Electron. J. "Investigated in Russia" 085, 889 (2005). Access mode: http://zhurnal.ape.relarn.ru/articles/2005/085.pdf
  28. A.D. Fofanov. The structure and short-range order in the oxygen- and carbon-containing systems with special properties. PhD Thesis, Moscow State University (1998). 343 p
  29. P. Scardi, L. Gelisio. Sci. Rep. 6, 22221 (2016). DOI: 10.1038/srep22221
  30. M. Rudolph, M. Motylenko, D. Rafaja. IUCrJ 6, Part 1, 116 (2019). DOI: 10.1107/S2052252518015786
  31. V.P. Pakharukova, D.A. Yatsenko, E.Y. Gerasimov, A.S. Shalygina, O.N. Martyanova, S.V. Tsybulya. J. Solid State Chem. 246, 284 (2017). DOI: 10.1016/j.jssc.2016.11.032
  32. M.E. Prokhorskii, A.D. Fofanov, L.A. Aleshina, E.A. Nikitina. Crystallogr. Rep. 49, 4, 631 (2004). DOI: 10.1134/1.1780628
  33. V.S. Urusov, N.N. Eremin. Computer modeling of structures and properties of crystals --- advancements and opportunities. Problemy Kristallografii 5, 228, GEOS, Moscow (1999). (in Russian)
  34. T.S. Bush, J.D. Gale, C.R.A. Catlow, P.D. Battle. J. Mater. Chem. 4, 6, 831 (1994). DOI: 10.1039/jm9940401765
  35. N.N. Eremin, V.S. Urusov, V.S. Rusakov, O.V. Yakubovich. Crystallogr. Rep. 47, 5, 759 (2002). DOI: 10.1134/1.1509390
  36. G.K. Williamson, W.H. Hall. Acta Metallurgica 1, 1, 22 (1953). DOI: 10.1016/0001-6160(53)90006-6
  37. V.I. Iveronova, G.P. Revkevich. The theory of X-ray scattering. Moscow State University Press, Moscow (1978). 246 p
  38. D. Balzar. Res. Natl. Inst. Stand. Technol. 98, 3, 321 (1993). DOI: 10.6028/jres.098.026
  39. W. Ruland. Acta Crystallogr. 14, 11, 1180 (1961). DOI: 10.1107/S0365110X61003429
  40. M. Kunz, T. Arlt, J. Stolz. Am. Mineral. 85, 10, 1465 (2000). DOI: 10.2138/am-2000-1016
  41. M. Kunz, D. Xirouchakis, D.H. Lindsley, D. Haeusermann. Am. Mineral. 81, 11-12, 1527 (1996). DOI: 10.2138/am-1996-11-1225
  42. J.A. Speer, G.V. Gibbs. Am. Mineral. 61, 3-4, 238 (1976)
  43. M. Taylor, G.E. Brown. Am. Mineral. 61, 5-6, 435 (1976)
  44. O.V. Sidorova, L.A. Aleshina, A.M. Kalinin, E.V. Kalinkina. Petrozavodsk State University Proceed., Ser. "Natural. Engg Sci." 4, 125, 112 (2012)
  45. B.D. Cullity. Elements of X-ray diffractions. Addison-Wesley, Reading, MA (1956). 555 p.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.