Вышедшие номера
A PL and PLE study of high Cu content Cu2ZnSnSe4 films on Mo/glass and solar cells *
Переводная версия: 10.1134/S1063783419050214
Sulimov Mikhail A.1,2, Yakushev Mikhail V.1,2,3, Forbes Ian4, Prieto Jose M.4, Mudryi Alexander V.5, Krustok Juri6, Edwards Paul R.7, Martin Robert W.7
1M.N. Mikheev Institute of Metal Physics of the UB RAS, Ekaterinburg, Russia
2Ural Federal University, Ekaterinburg, Russia
3Institute of Solid State Chemistry of the UB RAS, Ekaterinburg, Russia
4NPAG, Faculty of Engineering and Environment, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, U K
5Scientific-Practical Material Research Centre of the National Academy of Belarus, Minsk, Belarus
6Department of Material Science, Tallinn University of Technology, Tallinn, Estonia
7Department of Physics, SUPA, University of Strathclyde, G4 0NG Glasgow, UK
Email: sulimov.m.a@gmail.com
Выставление онлайн: 19 апреля 2019 г.

Cu2ZnSnSe4 (CZTSe) is amongst leading candidates for the absorber layer in sustainable solar cells. We examine CZTSe thin films with [Cu]/[Zn+Sn] of 0.99 and [Zn]/[Sn] of 1.07, deposited on Mo/glass substrates, and solar cells fabricated from these films. The bandgap (Eg) of the as deposited films and solar cells was examined by photoluminescence excitation (PLE) whereas the temperature and excitation intensity dependence of photoluminescence (PL) spectra was used to examine the nature of radiative recombination. The 6 K PL spectra of CZTSe/Mo exhibit an intense broad and asymmetrical band P1 at 0.822 eV and a lower intensity band P2 at 0.93 eV. The shape of this band, high rates of blue shift with excitation intensity rise (j-shift) j(P1)=14 meV and j(P2)=8 meV per decade, and red shifts of both bands with increasing temperature suggest that both bands are associated with valence band tails due to potential fluctuations caused by high populations of charged defects. The mean depth of such fluctuation gamma of 24 meV was estimated from the low energy side of P1. Device processing increased Eg, blue shifted P1, decreased its width, j-shift and the mean depth of potential fluctuations. These can be due to the annealing and/or can partly be related to KCN etching and the chemical effect of Cd, from CdS replacing copper at the CdS-CZTSe interface layer. Processing induced a new broad band P3 at 1.3 eV (quenching with Ea=200 meV). We attributed P3 to defects in the CdS layer. This research was supported by the Russian Science Foundation (grant 17-12-01500).
  1. X. Liu, Y. Feng, H. Cui, F. Liu, X. Hao, G. Conibeer, D.B. Mitzi, M. Green. Prog. Photovolt. 24, 879 (2016)
  2. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, T. Gokmen, Y. Virgus, S. Guha. Adv. Energy Mater. 12, 1401372-4 (2015)
  3. S. Chen, A. Walsh, X.G. Gong, S.H. Wei. Adv. Mater. 25, 1522 (2013)
  4. M.V. Yakushev, M.A. Sulimov, J. Marquez-Prieto, I. Forbes, J. Krustok, P.R. Edwards, V.D. Zhivulko, O.M. Borodavchenko, A.V. Mudryi, R.W. Martin. Soar. Energy Mater. Sol. Cells 168, 69 (2017)
  5. M. Lang, T. Renz, N. Mathes, M. Neuwirth, T. Schnabel, H. Kalt, M. Hetterinh. Appl. Phys. Lett. 109, 142103 (2016)
  6. O. Demirciov ulu, J.F.L. Salas, G. Rey, T. Weiss, M. Mousel, A. Redinger, S. Siebentritt, J. Parisi, L. Gutay. Opt. Express 25, 5327 (2017)
  7. E.W. Williams, H.B. Bebb. Semiconductors and Semimetals. Academic Press, N. Y. (1972)
  8. M. Grossberg, J. Krustok, K. Timmo, M. Altosaar. Thin Solid Films 517, 2489 (2009)
  9. S. Oueslati, G. Brammertz, M. Buffiere, C. Koble, T. Oualid, M. Meuris, J. Poortmans. Solar. Energy Mater. Solar. Cells 134, 340 (2015)
  10. J. Marquez-Prieto, M.V. Yakushev, I. Forbes, J. Krustok, V.D. Zhivulko, P.R. Edwards, M. Dimitrievska ,V. Izquerdo-Roca, N.M. Pearsall, A.V. Mudryi, R.W. Martin. Solar Energy Mater. Solar Cells 152, 42 (2016)
  11. A.R.G. Rey, J. Sendler, T.P. Weiss, M. Thevenin, M. Guennou, B. El Adib, S. Siebentritt. Appl. Phys. Lett. 105, 112106 (2014)
  12. C. Krammer, C. Huber, C. Zimmermann, M. Lang , T. Schnabel, T. Abzieher, E. Ahlswede, H. Kalt, M. Hetterich. Appl. Phys. Lett. 105, 262104 (2014)
  13. D. Tiwari, E. Skidchenko, J.W. Bowers, M.V. Yakushev, R.W. Martin, D.J. Fermin. J. Mater. Chem. C 5, 12720 (2017)
  14. J. Marquez, M. Neuschitzer, M. Dimitrievska, R. Gunder, S. Haass, M. Werner, Y.E. Romanyuk, S. Schorr, N.M. Pearsall, I. Forbes. Solar Energy Mater. Solar Cells 144, 579 (2016)
  15. M.V. Yakushev, J. Marquez-Prieto, I. Forbes, P.R. Edwards, V.D. Zhivulko, A.V. Mudryi, J. Krustok, R.W. Martin. J. Phys. D 48, 475109 (2015)
  16. А.П. Леванюк. В.В. Осипов. УФН 133, 427 (1981). [A.P. Levanyuk, V.V. Osipov. Sov. Phys. Usp 24, 187 (1987)]
  17. J. Krustok, H. Collan, M. Yakushev, K. Hjelt. Phys. Scripta 79, 179 (1999)
  18. M. Grossberg, P. Salu, J. Raudoja, J. Krustok. J. Photon. Energy 3, 030599 (2013)
  19. J. Mattheis, U. Rau, I.H. Werner. J. Appl. Phys. 101, 113519 (2007)
  20. B. Shklovskii, A. Efros. Electronic Properties of Doped Semiconductors. Springer, Berlin (1984)
  21. T. Gokmen, O. Ganawan, T.K. Todorov, D.B. Mitzi. Appl. Phys. Lett. 103, 103506 (2013)
  22. S. Siebentritt, N. Papathanasioua, M.Ch. Lux-Steiner. Physica B 376-377, 831 (2006)
  23. J.P. Teixeira, R.A. Sousa, M.G. Sousa, A.F. Cunha, P.A. Fernandes, P.M.P. Salome, J.P. Leitao. Phys. Rev. B 90, 235202 (2014)
  24. C. Persson. J. Appl. Phys. 107, 053710 (2010)
  25. K.P. O'Donnell, R.W. Martin, P.G. Middleton. Phys. Rev. Lett. 82, 237 (1999)
  26. M.E. White, K.P. O'Donnell, R.W. Martin, S. Pereira, C.J. Deatcher, I.M. Watson. Mater. Sci. Engin. B 93, 147 (2002)
  27. T. Schmidt, K. Lischka, W. Zulehner. Phys. Rev. B 45, 8989 (1992)
  28. A. Jagomagi, J. Krustok, J. Raudoja, M. Grossberg, M. Danilson, M. Yakushev. Physica B 337, 369 (2003)
  29. J. Krustok, H. Collan, K. Hjelt. J. Appl. Phys. 81, 1442 (1997)
  30. M. Paris, L. Choubrac, A. Lafond, C. Guillot-Deudon, S. Jobic. Inorganic Chem. 53, 8646 (2014)
  31. D. Huang, C. Persson. Thin Solid Films 535, 265 (2013)
  32. M. Bar, I. Repins, L. Weinhardt, J.-H. Alsmeier, S. Pookpanratana, M. Blum, W. Yang, C. Heske, R.G. Wilks, R. Noufi. ACS Energy Lett. 2, 1632 (2017)
  33. T. Maeda, S. Nakamura, T. Wada. Jpn. J. Appl. Phys. 51, 10NC11 (2012)
  34. S. Ranjbar, G. Brammertz, B. Vermang, A. Hadipour, M. Sylvester, A. Mule, M. Meuris, A.F. Cunha, J. Poortmans. Thin Solid Films 633, 127 (2017)
  35. M.I. Amal, K.H. Kim. Chalcogenide Lett. 9, 345 (2012)
  36. W.K. Metzger, R.K. Ahrenkiel, J. Dashdorj, D.J. Friedman. Phys. Rev. B 71, 035301 (2005)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.