Вышедшие номера
A point group approach to selection rules in crystals
Smirnov V.P.1, Evarestov R.A.2, Tronc P.3
1Institute of Fine Mechanics and Optics, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Ecole Superieure de Physique et Chimie Industrielles, F-- Paris, France
Поступила в редакцию: 23 января 2003 г.
Выставление онлайн: 20 июля 2003 г.

The problem of generation of the selection rules for a transition between Bloch states at any point of the Brillouin zone in crystals is equivalent to the problem of the decomposition of Kronecker products of two representations (reps) of a space group into irreducible components (the full group method). This problem can be solved also by the subgroup method where small reps of little groups are used. In this article, we propose the third method of the selection rules' generation which is formulated in terms of projective reps of crystal point groups. It is based on a well known relation between small irreducible reps (irreps) of little space groups and projective irreps of corresponding little co-groups. The proposed procedure is illustrated by calculations of the Kronecker products for different irreps at the W point of the Brillouin zone for the nonsymmorphic space group O7h being one of the most complicated space groups for the selection rules' generation. As an example, the general procedure suggested is applied to obtain the selection rules for direct and phonon--assisted electrical dipole transitions between some states in crystals with the space group O7h. One of the authors (V.P.S.) acknowledges the support of Ministere de la Recherche (France).
  1. R.J. Elliott, R.J. Loudon. J. Phys. Chem. Solids 15, 146 (1960)
  2. M. Lax, J. Hopfield. Phys. Rev 124, 115 (1961)
  3. C.J. Bradley, A.P. Cracknell. The mathematical theory of symmetry in solids. Clarendon, Oxford (1972)
  4. A.P. Cracknell, B.L. Davis, S.C. Miller, W.F. Love. Kronecker products Tables. Vol. 1--4. Plenum, N.Y. (1979)
  5. J.L. Birman. Theory of crystal space groups and infra-red and Raman lattice processes of insulating crystals. Handbuch der physik. Band XXV/2b. Springer--Verlag, Berlin (1974)
  6. G.L. Bir, G.E. Pikus. Symmetry and strain-induced effects in semiconductors. John Wiley \& Sons, N.Y. (1974)
  7. S.L. Altmann. Induced Representations in Cyrstals and Molecules. London (1977)
  8. R.A. Evarestov, V.P. Smirnov. Site Symmetry in Crystals: Theory and Applications. Vol. 108. of Springer Series in Solid State Sciences, 2nd ed. Berlin (1997)
  9. S.C. Miller, W.F. Love. Tables of Irreducible Representations of Space Groups and Co-Representations of Magnetic Space Groups. Pruett, Boulder (1967)
  10. The irreducible representations of space groups / Ed. by J. Zak. Benjanin, Elmsford. N.Y. (1969)
  11. O.V. Kovalev. Representations of the crystallographic space groups: irreducible repersentations, induced representations and corepresentations 2nd ed. Gordon and Breach, Philadelphia, PA (1993)
  12. E. Kroumova, C. Capillas, A. Kirov, M.I. Aroyo, H. Wondratschek, S. Ivantchev, J.M. Madariaga, J.M. Perez-Mato. Bilbao Crystallographic Server, www.cryst.ehu.es
  13. S. Ivantchev, E. Kroumova, J.M. Madariaga, J.M. Perez-Mato, M.I. Aroyo. J. Appl. Cryst. 33, 1190 (2000)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.