Вышедшие номера
Oscillations of the degree of circular polarization in the optical spin Hall effect
Переводная версия: 10.1134/S1063783418080206
Schmidt D.1, Berger B.1, Bayer M.1,2, Schneider C.3, Hofling S.3, Sedov E.4,5, Kavokin A.5,6, Abmann M.1
1Experimentelle Physik 2, Technische Universität Dortmund, Dortmund, Germany
2A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
3Technische Physik, Universitat Wurzburg, Wurzburg, Germany
4Department of Physics and Applied Mathematics, Vladimir State University named after A.G. and N.G. Stoletovs, Vladimir, Russia
5School of Physics and Astronomy, University of Southampton, SO17 1NJ Southampton, United Kingdom
6Spin Optics Laboratory, St. Petersburg State University, St. Petersburg, Russia
Email: daniel.schmidt@udo.edu
Выставление онлайн: 20 июля 2018 г.

The optical spin Hall effect appears when elastically scattered exciton polaritons couple to an effective magnetic field inside of quantum wells in semiconductor microcavities. Theory predicts an oscillation of the pseudospin of the exciton polaritons in time. Here, we present a detailed analysis of momentum space dynamics of the exciton polariton pseudospin. Compared to what is predicted by theory, we find a higher modulation of the temporal oscillations of the pseudospin. We attribute the higher modulation to additional components of the effective magnetic field which have been neglected in the foundational theory of the optical spin Hall effect. Adjusting the model by adding non-linear polariton-polariton interactions, we find a good agreement in between the experimental results and simulations. Acknowledgements We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft in the framework of the ICRC TRR 160 within Project N B7. The Wurzburg group acknowledges support by the Deutsche Forschungsgemeinschaft within Project N SCHN1376-3.1. E.S. acknowledges support from the Russian Foundation for Basic Research Grant N 16-32-60104. A.K. and E.S. acknowledge support from the Engineering and Physical Sciences Research Council (EPSRC) Programme Grant N EP/M025330/1 "Hybrid Polaritonics". A.K. acknowledges partial support from the HORIZON 2020 RISE project CoExAn (Grant N 644076). A.K. acknowledges support from the Russian Foundation for Basic Research Grant N 15-52-12018.
  1. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J.M.J. Keeling, F.M. Marchetti, M.H. Szymanska, R. Andre, J.L. Staehli, V. Savona, P.B. Littlewood, B. Deveaud, L.S. Dang. Nature 443, 409 (2006)
  2. D. Sarkar, S. Gavrilov, M. Sich, J. Quilter, R. Bradley, N. Gippius, K. Guda, V. Kulakovskii, M. Skolnick, D. Krizhanovskii. Phys. Rev. Lett. 105, 216402 (2010)
  3. M. Amthor, T.C.H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I.A. Shelykh, A.V. Kavokin, C. Schneider, S. Hofling. Phys. Rev. B 91, 081404 (2015)
  4. A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino, A. Bramati. Nature Phys. 5, 805 (2009)
  5. I. Carusotto, C. Ciuti. Phys. Rev. Lett. 93, 166401 (2004)
  6. A. Kavokin, G. Malpuech, F.P. Laussy. Phys. Lett. A 306, 187 (2003)
  7. D. Ballarini, M. De Giorgi, E. Cancellieri, R. Houdre, E. Giacobino, R. Cingolani, A. Bramati, G. Gigli, D. Sanvitto. CLEO: QELS Fundamental Science, QM1D (2013)
  8. T. Espinosa-Ortega, T.C.H. Liew. Phys. Rev. B 87, 195305 (2013)
  9. C. Leyder, T.C.H. Liew, A.V. Kavokin, I.A. Shelykh, M. Romanelli, J.P. Karr, E. Giacobino, A. Bramati. Phys. Rev. Lett. 99, 196402 (2007)
  10. I.A. Shelykh, A.V. Kavokin, Y.G. Rubo, T.C.H. Liew, G. Malpuech. Semiconductor Sci. Technology 25, 013001 (2010)
  11. H. Suchomel, S. Brodbeck, T. Liew, M. Amthor, M. Klaas, S. Klembt, M. Kamp, S. Hofling, C. Schneider et al. Sci. Rep. 7 (2017)
  12. C. Anton, S. Morina, T. Gao, P. Eldridge, T.C.H. Liew, M. Marti n, Z. Hatzopoulos, P. Savvidis, I.A. Shelykh, L. Vina. Phys. Rev. B 91, 075305 (2015)
  13. A. Askitopoulos, K. Kalinin, T.C.H. Liew, P. Cilibrizzi, Z. Hatzopoulos, P.G. Savvidis, N.G. Berloff, P.G. Lagoudakis. Phys. Rev. B 93, 205307 (2016)
  14. P. Cilibrizzi, H. Sigurdsson, T.C. Liew, H. Ohadi, S. Wilkinson, A. Askitopoulos, I.A. Shelykh, P. Lagoudakis. Phys. Rev. B 92, 155308 (2015)
  15. T. Gao, C. Anton, T.C.H. Liew, M. Marti n, Z. Hatzopoulos, L. Vina, P. Eldridge, P. Savvidis. Appl. Phys. Lett. 107, 011106 (2015)
  16. K. Kavokin, I. Shelykh, A. Kavokin, G. Malpuech, P. Bigenwald. Phys. Rev. Lett. 92, 017401 (2004)
  17. A. Kavokin, G. Malpuech, M. Glazov. Phys. Rev. Lett. 95, 136601 (2005)
  18. R. Houdre, C. Weisbuch, R. Stanley, U. Oesterle, M. Ilegems. Phys. Rev. B 61, R13333 (2000)
  19. T. Freixanet, B. Sermage, J. Bloch, J. Marzin, B. Gayral, R. Planel. Phys. E 7, 676 (2000)
  20. W. Langbein, J.M. Hvam. Phys. Rev. Lett. 88, 047401 (2002)
  21. C. Leyder, M. Romanelli, J.P. Karr, E. Giacobino, T.C. Liew, M.M. Glazov, A.V. Kavokin, G. Malpuech, A. Bramati. Nature Phys. 3, 628 (2007)
  22. S. Morina, T.C.H. Liew, I.A. Shelykh. Phys. Rev. B 88, 035311 (2013)
  23. I. Shelykh, G. Malpuech, K. Kavokin, A. Kavokin, P. Bigenwald. Phys. Rev. B 70, 115301 (2004)
  24. H. Flayac, D. Solnyshkov, G. Malpuech. New J. Phys. 14, 085018 (2012)
  25. G. Nardin, T. K. Parai so, R. Cerna, B. Pietka, Y. Leger, O. El Daif, F. Morier-Genoud, B. Deveaud-Pledran. Appl. Phys. Lett. 94, 181103 (2009).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.