Вышедшие номера
Structure and charge transfer dynamics of uranyl ions in boron oxide and borosilicate glasses
Liu G.K.1, Zhuang H.Z.1, Beitz J.V.1, Williams C.W.1, Vikhnin V.S.2
1Chemistry Division, Argonne National Laboratory, Argonne, IL, USA
2A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email: gkliu@anl.gov
Выставление онлайн: 20 июля 2002 г.

Laser spectroscopic experiments, molecular dynamics simulation, and charge transfer-lattice interaction modeling have been conducted for studing the electronic and structural properties of uranyl ion UO2+2 in boron oxide and borosilicate glasses. The charge transfer electronic and vibrational energy levels for uranyl ions in the glass matrices were obtained from laser excitation and fluorescence spectra of UO2+2. A model structure for uranyl ions in the glass matrices was established using the method of molecular dynamics (MD) simulation in comparison with the results of extended X-ray absorption fine structure (EXAFS) for U6+ ions in the glasses we studied. The formation and stabilization of uranyl clusters in glass matrices are interpreted by charge transfer-lattice interactions on the basis of self-consistent charge transfer accompanied by lattice distortion. The latter is in the framework of the simultaneous action of pseudo-Jahn-Teller and pseudo-Jahn-Teller analog effects on charge transfers between oxyged-uranium ions. Work performed at Argonne National Laboratory was supported by the U.S. DOE Office of Basic Energy Science, Division of Chemical Sciences, and by DOE EMSP Programs, under contract N W-31-109-ENG-38. One of us (V.S.V.) was supported in Germany nad Russia by the German DAAD and RFBR Programs (N 00-02-16875) and by NATO (PST. CLG, 977348).
  1. C.K. J rgensen. Acta Chem. Scand. 11, 166 (1957)
  2. C. Gorller-Walrand, L.G. Van Quikenborne. J. Chem. Phys. 54, 4178 (1971)
  3. C.K. J rgensen, R. Reisfeld. Chem. Phys. Lett. 35, 441 (1975)
  4. R.G. Denning. In: Complexes, Clusters and Crystal Chemistry. Springer-Verlag, Berlin, Heidelberg (1992). V. 79. P. 215
  5. L.M. Belyaev, G.F. Dobrzhanskii, P.P. Feofilov. Izv. AN SSSR. Ser. fiz. 25, 4, 548 (1961)
  6. P.P. Feofilov, A.A. Kaplyanskii. Usp. Fiz. Nauk 76, 2, 201 (1962)
  7. V.S. Vikhnin. Ferroelectrics 199, 25 (1997); Z. Phys. Chem. 201, 201 (1997); Ferroelectrics Lett. 25, 27 (1999)
  8. V.S. Vikhnin, H. Liu, W. Jia, S. Kapphan. J. Lumin. 83--84, 91 (1999)
  9. R.G. Denning, T.R. Snellgrove, D.R. Woodwark. Mol. Phys. 30, 1819 (1976)
  10. R.G. Denning, C.N. Ironside, J.R.G. Thorne, D.R. Woodwark. Mol. Phys. 44, 209 (1981)
  11. G.K. Liu, V.V. Zhorin, M.R. Antonio, S.T. Li, C.W. Williams, L. Soderholm. J. Chem. Phys. 112, 1489 (2000)
  12. M.R. Antoio, L. Soderholm, A.J.G. Ellison. J. Alley Compd. 250, 536 (1997)
  13. B.W. Veal, J.N. Mundy, D.J. Lam. In: Handbook on the Physics and Chemistry of Actinides / Ed. A.J. Freeman and G.H. Lander. North Holland (1987). P. 271
  14. G.K. Liu, H.Z. Zhuang, M.R. Antoio, L. Soderholm. To be published
  15. D. Frenkel, B. Smith. Understanding Molecular Simulation. Academic Press, N.Y. (1996)
  16. D.J. Evans, G.P. Morris. Computer Phys. Rep. 1, 297 (1984)
  17. D.C. Rapaport. The art of molecular dynamics simulation. Cambridge University Press (1995)
  18. F.H. Stillinger, T.A. Weber. Phys. Rev. B31, 5262 (1985)
  19. J.-P. Blaudeau. Private communication
  20. J.S. Craw, M.A. Vincent, I.H. Hiller, A.L. Wallwork. J. Phys. Chem. 99, 10 181 (1995)
  21. H.Z. Zhuang, G.K. Liu. To be published

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.