Вышедшие номера
Structural transformations in carbon nanoparticles induced by electron irradiation
Banhart F.1
1Z.E. Elektronenmikroskopie, Universitat Ulm, Ulm, Germany
Выставление онлайн: 17 февраля 2002 г.

The paper reviews the effects of electron irradiation in graphitic nanoparticles. Irradiation-induced atom displacements cause structural defects in the graphite lattice that forms the basis of carbon nanoparticles such as nanotubes or carbon onions. Defects of the type of non-six-membered rings induce topological alterations of graphene layers. The generation of curvature under electron irradiation leads to the formation of new structures such as spherical carbon onions or coalesced nanotubes. At high temperature, the self-compression of carbon onions can promote the nucleation of diamond cores or phase transformations of foreign materials that are encapsulated by onion-like graphitic shells. Under the non-equilibrium conditions of intense irradiation, the phase equilibrium between graphite and diamond can be reversed. It is shown that graphite can be transformed to diamond even if no external pressure is applied. All electron irradiation and imaging studies described here were carried out by in situ transmission electron microscopy.
  1. B.T. Kelly. Physics of Graphite. Applied Science. London (1981)
  2. F. Banhart. Rep. Prog. Phys. 62, 1181 (1999)
  3. J. Koike, D.F. Pedraza. J. Mater. Res. 9, 1899 (1994)
  4. F. Banhart, T. Fuller, Ph. Redlich, P.M. Ajayan. Chem. Phys. Lett. 269, 349 (1997)
  5. P.A. Thrower, R.M. Mayer. Phys. Stat. Sol. ( a) 47, 11 (1978)
  6. M. Heggie, B.R. Eggen, C.P. Ewels, P. Leary, S. Ali, G. Jungnickel, B. Jones, P.R. Briddon. In: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials / Ed. by K.M. Kadish, R.S. Ruoff. The Electrochemical Society, San Diego (1998). Vol. 6. P. 60
  7. A.J. Stone, D.J. Wales. Chem. Phys. Lett. 128, 501 (1986)
  8. H. Terrones, M. Terrones, W.K. Hsu. Chem. Soc. Rev. 24, 341 (1995)
  9. M. Terrones, H. Terrones. Fullerene Sci. Technol. 4, 517 (1996)
  10. D. Ugarte. Nature 359, 707 (1992)
  11. T. Fuller, F. Banhart. Chem. Phys. Lett. 254, 372 (1996)
  12. P.M. Ajayan, V. Ravikumar, J.-C. Charlier. Phys. Rev. Lett. 81, 1437 (1998)
  13. M. Terrones, H. Terrones, F. Banhart, J.-C. Charlier, P.M. Ajayan. Science 288, 1226 (2000)
  14. K.R. Bates, G.E. Scuseria. Theor. Chem. Acc. 99, 29 (1998)
  15. M. Zaiser. Mater. Res. Soc. Symp. Proc. 540, 243 (1999)
  16. F. Banhart, P.M. Ajayan. Nature 382, 433 (1996)
  17. G. Davies. Properties and Growth of Diamond. INSPEC, London (1994)
  18. Y. Lyutovich, F. Banhart. Appl. Phys. Lett. 74, 659 (1999)
  19. M. Zaiser, F. Banhart. Phys. Rev. Lett. 79, 3680 (1997)
  20. M. Zaiser, Y. Lyutovich, F. Banhart. Phys. Rev. B62, 3058 (2000)
  21. M. Terrones, N. Grobert, W.K. Hsu, Y.Q. Zhu, W.B. Hu, H. Terrones, J.P. Hare, H.W. Kroto, D.R.M. Walton. Mater. Res. Soc. Bull. 24, 43 (1999)
  22. F. Banhart, Ph. Redlich, P.M. Ajayan. Chem. Phys. Lett. 292, 554 (1998)
  23. F. Banhart, J.-C. Charlier, P.M. Ajayan. Phys. Rev. Lett. 84, 686 (2000)
  24. M. Terrones, F. Banhart, to be published

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.