Вышедшие номера
Rare earth ions in porous matrices
Lezhnina M.M.1,2, Katker Heike1, Kynast Ulrich H.1
1University of Applied Sciences Muenster, Steinfurt, Germany
2Mari State Technical University, Institute of Physics, Yoshkar-Ola, Russia
Email: uk@fh-muenster.de
Выставление онлайн: 20 июля 2005 г.

Initially motivated by the commercial need for cheaper and environmentally friendly luminescent materials for the application in fluorescent lapms and cathode ray tubes, the search for new matrices for optically active species has penetrated a scope far beyond "classical" solid state materials. Porous matrices with voids ranging from the nano- to the microscale have become the subject of recent investigations. Crystalline, amorphous, organomorphous, nanosized matrices and matrices, which are amorphous on the atomic level but have a translational superstructure on the microscale (zeolites, sol-gel materials, polymers, nanoparticles and photonic crystals), are addressed. The optical technologies covered in this research range from mercury free discharge lampls, plasma displays, organic and polymeric light emitting diodes, novel laser materials to biophotonics and the new generation of white emitting AlGaN solid state light emitting diodes (LEDs). Due to specific specific properties (e. g. high quantum yields, narrow line emission), rare rarth ions are indispensable components these approaches, be it in the nanoscaling zeolites, sol-gel matrices, or as the active component in optically functional polymers. Optical properties of hybrid materials composed of either rare earth ions as such, their complexes or nanoparticles in these matrices, with potential applications in mentioned fields in mind, will form the scope of the present report.
  1. R.T. Wegh, H. Donker, K.D. Oskam, A. Meijerink. Science 283, 663 (1999)
  2. J. Nanda, S. Sapra, D. Sarma. Chem. Mater. 12, 1018 (2000)
  3. S. Coe, W.-K. Woo, M. Bawendi, V. Bulovi'c. Nature 420, 800 (2002)
  4. N.N. Tessler, V. Medvedev, M. Kazes, S.H. Kan, U. Banin. Science 295, 1506 (2002)
  5. U. Kynast, V. Weiler. Adv. Mater. 6, 937 (1994)
  6. T. Justel, D.U. Wiechert, C. Lau, D. Sendor, U. Kynast. Adv. Funct. Mater. 11, 105 (2001)
  7. C. Borgmann, J. Sauer, T. Justel, U. Kynast, F. Schuth. Adv. Mater. 11, 45 (1999)
  8. C. Lau, H.-J. Mai, U. Kynast. Micropor. Mesopor. Mater. 47, 339 (2001)
  9. M. Lezhnina, U. Kynast. J. Alloys Comp. 380, 55 (2004)
  10. V.L. Ermolaev. Soviet Physics Uspekhi 80, 333 (1963)
  11. D. Sendor, U. Kynast. In: Host-Guest Systems Based on Nanoporous Crystals / Eds F. Laeri, F. Schuth, U. Simon, M. Wark. Part 4. Ch. 5. Wiley-VCH, Weinheim (2003). P. 558
  12. D. Sendor, U. Kynast. Adv. Mater. 14, 1570 (2002)
  13. J.L. Sommerdijk, A. Bril, A.W. de Jager. J. Lumin. 8, 341 (1974)
  14. R. Pappalardo. L. Lumin. 14, 159 (1974)
  15. S. Fujihara, C. Mochizuki, T. Kimura. J. Non-crystalline Solids 244, 267 (1999)
  16. R. Van Deun, K. Binnemans, C. Gorller-Wallrand, J.L. Adam. J. Phys.: Condens. Matter 10, 7231 (1998)
  17. J.-L. Adam. In: Advanced Inorganic Fluorides / Eds T. Nakajima, B. Zemva, A. Tressaud. Elsevier, Amsterdam (2000). P. 235
  18. U. Kynast. Paso GmbH. "Synthesis of polymers for luminescence effects (Darstellung von Polymeren zur Erzeugung von Lumineszenzeffekten)". EP Appl. 02025915.6 (2002)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.