Вышедшие номера
Cavity--polariton dispersion and polarization splitting in single and coupled semiconductor microcavities
Panzarini Giovanna1, Andreani Lucio Claudio1, Armitage A.2, Baxter D.2, Skolnick M.S.2, Astratov V.N.2, Roberts J.S.2, Kavokin Alexey V.3, Vladimirova Maria R.3, Kaliteevski M.A.4
1Istituto Nazionale per la Fisica della Materia--Dipartimento di Fisica "A. Volta", Universita di Pavia, via Bassi 6, Pavia, Italy
2Department of Physics, University of Sheffield, Sheffield S3 7RH, United Kingdom
3LASMEA, Universite Blaise Pascal Clermont II, Complexe Scientifique des Cezeaux, 24, Avenue des Landais, Aubiere Cedex, France
4A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Поступила в редакцию: 9 февраля 1999 г.
Выставление онлайн: 20 июля 1999 г.

Recent theoretical and experimental work on linear exciton-light coupling in single and coupled semiconductor microcavities is reviewed: emphasis is given to angular dispersion and polarization effects in the strong-coupling regime, where cavity-polariton states are formed. The theoretical formulation is based on semiclassical theory. The energy of single-cavity modes is determined by the bare Fabry-Perot frequency omegac as well as by the center of the stop band omegas of the dielectric mirrors; the phase delay in the dielectricl mirrors carries a nontrivial angle- and polarization dependence. The polarization splitting of cavity modes depends on the mismatch between omegac and omegas, and increases with internal angle as sin2thetaeff. Interaction between the cavity mode and quantum well (QW) excitons is described at each angle by a two-oscillator model, whose parameters are expressed in terms of microscopic quantities. Weak and strong coupling regimes and the formation of cavity polaritons are described. Comparison with experimental results on a GaAs-based cavity with In0.13Ga0.87As QWs shows that a quantitative understanding of polariton dispersion and polarization splitting has been achieved. Coupling of two identical cavities thorugh a central dielectric mirror induces an optical splitting between symmetric and antisymmetric modes. When QW excitons are embedded in both cavities at antinode positions, the system behaves as four coupled oscillators, leading to a splitting of otherwise degenerate exciton states and to separate anticrossing of symmetric and antisymmetric modes. These features are confirmed by experimental results on coupled GaAs cavities with In0.06Ga0.94As QWs. An analysis of reflectivity lineshapes requires the inclusion of the effect of resonance narrowing of cavity polaritons. Finally, the polarization splitting in a coupled cavity depends both on the single-cavity factors and on the angle- and polarization dependence of the optical coupling between the cavities. Inclusion of all these effects provides a good description of the experimental findings.
  1. J.J. Hopfield. Phys. Rev. 112, 1555 (1958); V.M. Agranovich, J. Exptl. Theoret. Phys. 37, 430 (1959); [Sov. Phys. JETP 37, 307 (1960)]
  2. C. Weisbuch, M. Nishioka, A. Ishikawa, Y. Arakawa. Phys. Rev. Lett. 69, 3314 (1992)
  3. R. Houdre, C. Weisbuch, R.P. Stanley, U. Oesterle, P. Pellandini, M. Ilegems. Phys. Rev. Lett. 73, 2043 (1994)
  4. R. Houdre, R.P. Stanley, U. Oesterle, M. Ilegems, C. Weisbuch. Phys. Rev. B49, 16 761 (1994); T.R. Nelson, Jr., J.P. Prineas, G. Khitrova, H.M. Gibbs, J.D. Berger, E.K. Lindmark, J.-H. Shin, H.-E. Shin, Y.-H. Lee, P. Tayebati, L. Javniskis. Appl. Phys. Lett. 69, 3031 (1996); L.A. Graham, Q. Deng, D.G. Deppe, D.L. Huffaker. Appl. Phys. Lett. 70, 814 (1997)
  5. T.B. Norris, J.K. Rhee, C.Y. Sung, Y. Arakawa, M. Nishioka, C. Weisbuch, Phys. Rev. B50, 14 663 (1994); H. Wang, J. Shah, T.C. Damen, W.Y. Jan, J.E. Cunningham, M. Hong, J.P. Mannaerts. Phys. Rev. B51, 14 713 (1995); G. Bongiovanni, A. Mura, F. Quochi, S Gurtler, G.L. Staehli, F. Tassone, R.P. Stanley, U. Oesterle, R. Houdre. Phys. Rev. B55, 7084 (1997)
  6. T.A. Fisher, A.M. Afshar, D.M. Whittaker, M.S. Skolnick, J.S. Roberts, G. Hill, A. Pate. Phys. Rev. B51, 2600 (1995)
  7. J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdre, U. Oesterle, R.P. Stanley. Phys. Rev. Lett. 74, 3967 (1995); J. Tignon, R. Ferreira, J. Wainstain, C. Delalande, P. Voisin, M. Voos, R. Houdre, U. Oesterle, R.P. Stanley. Phys. Rev. B56, 4068 (1997)
  8. T.A. Fisher, A.M. Afshar, M.S. Skolnick, D.M. Whittaker, J.S. Roberts. Phys. Rev. B53, R10469 (1996)
  9. J.D. Berger, O. Lyngnes, H.M. Gibbs, G. Khitrova, T.R. Nelson, E.K. Lindmark, A.V. Kavokin, M.A. Kaliteevski, V.V. Zapasskii. Phys. Rev. B54, 1975 (1996)
  10. A. Armitage, T.A. Fisher, M.S. Skolnick, D.M. Whittaker, P. Kinsler, J.S. Roberts. Phys. Rev. B55, 16 395 (1997)
  11. J.-K. Rhee, D.S. Citrin, T.B. Norris, Y. Arakawa, M. Nishioka. Solid. State Commun. 97, 941 (1996); R. Houdre, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J. O'Gorman, B. Roycroft, M. Ilegems. Phys. Rev. B52, 7810 (1995); F. Jahnke, M. Kira, S.W. Koch, G. Khitrova, E.K. Lindmark, T.R. Nelson, Jr., D.V. Wick, J.D. Berger, O. Lyngnes, H.M. Gibbs, K. Tai. Phys. Rev. Lett. 77, 5257 (1996); O. Lyngnes, J.D. Berger, J.P. Prineas, S. Park, G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch, Solid. State Commun. 104, 297 (1997)
  12. R.P. Stanley, R. Houdre, C. Weisbuch, U. Oesterle, M. Ilegems. Phys. Rev. B53, 10 995 (1996); R.P. Stanley, S. Pau, U. Oesterle, R. Houdre, M. Ilegems. Phys. Rev. B55, 4867 (1997)
  13. V. Savona, C. Weisbuch. Phys. Rev. B54, 10 835 (1996)
  14. F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, P. Schwendimann. Phys. Rev. B53, R7642 (1996)
  15. S. Pau, G. Bjork, J. Jacobson, H. Cao, Y. Yamamoto. Phys. Rev. B51, 7090 (1995); S. Pau, G. Bjork, H. Cao, F. Tassone, R. Huang, Y. Yamamoto, R.P. Stanley. Phys. Rev. B55, 1942 (1997)
  16. D.M. Whittaker, P. Kinsler, T.A. Fisher, M.S. Skolnick, A. Armitage, A.M. Afshar, M.D. Sturge, J.S. Roberts. Phys. Rev. Lett. 77, 4792 (1996); P. Kinsler, D.M. Whittaker. Phys. Rev. B54, 4988 (1996)
  17. V. Savona, C. Piermarocchi, A. Quattropani, F. Tassone, P. Schwendimann. Phys. Rev. Lett. 78, 4470 (1997)
  18. A.V. Kavokin. Phys. Rev. B57, 3757 (1998)
  19. D.M. Whittaker. Phys. Rev. Lett. 80, 4791 (1998)
  20. C. Ell, J. Prineas, T.R. Nelson, Jr., S. Park, H.M. Gibbs, G. Khitrova, S.W. Koch, R. Houdre, Phys. Rev. Lett. 80, 4795 (1998)
  21. J.J. Baumberg, A. Armitage, M.S. Skolnick, J.S. Roberts, Phys. Rev. Lett. 81, 661 (1998)
  22. G.R. Hayes, S. Haacke, M. Kauer, R.P. Stanley, R. Houdre, U. Oesterle, B. Deveaud. Phys. Rev. B58, 10 175 (1998).
  23. F. Quochi, G. Bongiovanni, A. Mura, J.L. Staehli, B. Deveaud, R.P. Stanley, U. Oesterle, R. Houdre. Phys. Rev. Lett. 80, 4733 (1998)
  24. P. Kelkar, V. Kozlov, H. Leon, A. Nurmikko, C. Chu, D. Grillo, J. Han, C. Hua, R. Gunshor. Phys. Rev. B52, 5491 (1995)
  25. L.S. Dang, D. Heger, R. Andre, F. Boeuf, A. Romestain. Phys. Rev. Lett. 81, 3920 (1998)
  26. T. Ishihara, T. Kuitani, Y. Sato, T. Fujita, M. Yamanishi. In: Physics of Semiconductors / Ed. by M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), p. 3087; T. Fujita, Y. Sato, T. Kuitani, T. Ishihara. Phys. Rev. B57, 12 428 (1998)
  27. D.G. Lidzey, D.D.C. Bradley, M.S. Skolnick, T. Virgili, S.Walker, D.M. Whittaker. Nature 395, 53 (1998)
  28. V. Savona, C. Piermarocchi, A. Quattropani, P. Schwendimann, F. Tassone. In: New Aspects in Optical Properties of Nanostructures, Special issue of Phase Transitions. Vol. 68 (Gordon and Breach, 1999)
  29. G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, S.W. Koch (to be published)
  30. M.S. Skolnick, T.A. Fisher, D.M. Whittaker. Semicond. Sci. Technol. 13, 645 (1998)
  31. R.P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch. Appl. Phys. Lett. 65, 2093 (1994)
  32. P. Pellandini, R.P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, C. Weisbuch. Appl. Phys. Lett. 71, 864 (1997)
  33. A. Armitage, M.S. Skolnick, V.N. Astratov, D.M. Whittaker, G. Panzarini, L.C. Andreani, T.A. Fisher, J.S. Roberts, A.V. Kavokin, M.A. Kaliteevski, M.R. Vladimirova. Phys. Rev. B57, 14877 (1998); G. Panzarini, L.C. Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov, J.S. Roberts, A.V. Kavokin, M.R. Vladimirova, M.A. Kaliteevski. To be published in Phys. Rev. B59, (1999)
  34. D.S. Citrin. Phys. Rev. B49, 1943 (1994); L.C. Andreani. Phys. Stat. Sol. (b) 188, 29 (1995)
  35. G. Panzarini, L.C. Andreani. Phys. Rev. B52, 10 780 (1995)
  36. L. Pavesi, G. Panzarini, L.C. Andreani. Phys. Rev. B58, 15 798 (1998)
  37. D.I. Babic, S.W. Corzine, IEEE J. Quantum Electron. 28, 514 (1992)
  38. V. Savona, L.C. Andreani, P. Schwendimann, A. Quattropani. Solid State Commun. 93, 733 (1995)
  39. A.V. Kavokin, M.A. Kaliteevski. Solid State Commun. 95, 859 (1995)
  40. E.L. Ivchenko, M.A. Kaliteevski, A.V. Kavokin, A.I. Nesvizhskii. J. Opt. Soc. Am. B13, 1061 (1996)
  41. D. Baxter, M.S. Skolnick, A. Armitage, V.N. Astratov, D.M. Whittaker, T.A. Fisher, J.S. Roberts, D.J. Mowbray, M.A. Kaliteevski. Phys. Rev. B56, R10032 (1997)
  42. For a review see e. g. L.C. Andreani. In: Confined Excitons and Photons: New Physics and Devices / Ed. by E. Burstein and C. Weisbuch (Plenum, New York, 1995), p. 57
  43. E.L. Ivchenko, S. Jorda, A.I. Nesvizhskii. Fiz. Tekn. Poluprov. (St-Petersburg) 27, 977 (1993); [Sov. Phys. Semicond. 27, 530 (1993)]
  44. D.S. Citrin. Phys. Rev. B50, 5497 (1994)
  45. L.C. Andreani. Phys. Lett. A192, 99 (1994)
  46. F. Tassone, F. Bassani, L.C. Andreani. Il Nuovo Cimento D12, 1673 (1990); F. Tassone, L.C. Andreani, F. Bassani. Phys. Rev. B45, 6023 (1992)
  47. L.C. Andreani, F. Tassone, F. Bassani. Solid State Commun. 77, 641 (1991).
  48. E.L. Ivchenko. Fiz. Tverd. Tela 33, 2388 (1991) [Sov. Phys. Solid State 33, 1344 (1991)]
  49. D.S. Citrin. Phys. Rev. B47, 3832 (1993)
  50. M. Born, E. Wolf. Principles of Optics, 4th ed. Pergamon, N. Y. (1970)
  51. H.A. McLeod. Thin-Film Optical Filters, 2nd ed. Hilger (1986)
  52. A. Yariv, P. Yeh. Optical Waves in Crystals [5 Wiley, New York, (1984)
  53. C.R. Pidgeon, S.D. Smith. J. Opt. Soc. Am. 54, 1459 (1964)
  54. S. Jorda. Phys. Rev. B51, 10 185 (1995)
  55. This approximate formula for the dispersion is usually derived from the relation omega_m=(c/neff)sqrt(k_z^2+k||^2)sqrt, considering that the wavevector along the cavity axis is quantized, leading to omega_m(theta)=omega_m(0)(1-sin^2theta/neff^2)-1/2
  56. H. Yokoyama, Y. Nambu, T. Kawakami. In: Confined Excitons and Photons: New Physics and Devices / Ed. by E. Burstein and C. Weisbuch (Plenum, New York, 1995), p. 427; G. Bjork, Y. Yamamoto, H. Heitmann, ibid., p. 467
  57. D.S. Citrin. Solid State Commun. 89, 139 (1994)
  58. L.C. Andreani. Phys. Stat. Solidi (b) 188, 29 (1995)
  59. G. Bjork, S. Pau, J.M. Jacobson, H. Cao, Y. Yamamoto. Phys. Rev. B52, 17 310 (1995)
  60. V.M. Agranovich, G.C. La Rocca, F. Bassani. Phys. Stat. Sol. (a) 164 39 (1997); G.C. La Rocca, F. Bassani, V.M. Agranovich. J. Opt. Soc. Am. B15, 652 (1998)
  61. V.M. Agranovich, H. Benisty, C. Weisbuch. Solid State Commun. 102 631 (1997)
  62. This sample was first reported in T.A. Fisher, A.M. Afshar, M.S. Skolnick, D.M. Whittaker, J.S. Roberts, Solid State Electron. 40, 493 (1996) and in Ref. 8
  63. The more precise values quoted in Ref. 41 include absorption, as well as oxidation of the top 50 Angstrem of the top AlGaAs layer
  64. Experimentally, another reason for the dominant TM polarization is that the reflection coefficient of the cryostat window is greater for TE than for TM, therefore the intensity of light falling on the sample is larger for TM than for TE
  65. J.T. Boyd. IEEE J. Quantum Electr. 8, 788 (1972)
  66. R. Atanasov, F. Bassani, A. D'Andrea, N. Tomassini. Phys. Rev. B50, 14 381 (1994); R.C. Iotti, L.C. Andreani. Phys. Rev. B56, 3922 (1997)
  67. I. Carusotto, G.C. La Rocca. Phys. Stat. Sol. (a) 164, 377 (1997)
  68. G. Panzarini (unpublished)
  69. W.T. Masselink, P.J. Pearah, J. Klem, C.K. Peng, H. Morkoc, G.D. Sanders, Y.-C. Chang. Phys. Rev. B32, 8027 (1985)
  70. S. Frisk, J.-L. Staehli, L.C. Andreani, A. Bosacchi, S. Franchi. In: Optics of Excitons in Confined Systems / Ed. by A. D'Andrea, R. Del Sole, R. Girlanda, and A. Quattropani (IOP Conference Series 123), p. 183 (1992)
  71. L.C. Andreani, G. Panzarini, A.V. Kavokin M.R. Vladimirova. Phys. Rev. B57, 4670 (1998).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.