Вышедшие номера
Relaxation of electronic excitations in wide-gap crystals studied by femtosecond interferometry technique
Nagirnyi V.1, Geoffroy G.2, Guizard S.2, Kirm M.1, Kotlov A.1
1Institute of Physics, University of Tartu, Tartu, Estonia
2Laboratoire des Solides Irradies, CEA--CNRS Ecole Polytechnique, Palaiseau, France
Email: vetal@fi.tartu.ee
Выставление онлайн: 20 августа 2008 г.

The method of time-resolved interferometry with the 100 fs temporal resolution was applied for the first time to study the relaxation processes of electronic excitations in complex oxides, tungstate crystals of CdWO4 with the lattice of the wolframite type and CaWO4 with the scheelite type lattice. Two stages of charge carrier relaxation, its very fast trapping in 200 fs resulting in self-trapped exciton formation and a relatively slow relaxation process in a picosecond time range probably due to the configurational relaxation within the oxyanion molecule and modification of the surrounding lattice, were revealed in tungstate crystals. The corresponding models of self-trapped exciton creation in tungstate crystals are discussed. A financial support by the Access to Research Infrastructures activity in the FP6 of the EU (contract RII3-CT-2003-506350, Laserlab Europe) as well as by the Estonian Science Foundation (Grants N 6538 and 7274) for conducting the research are gratefully acknowledged. PACS: 72.20.Jv, 78.47.+p
  1. S. Guizard, P. Martin, Ph. Daguzan, G. Petite, P. Audebert, J.P. Geindre, A. Dos Santos, A. Antonnetti. Europhys. Lett. 29, 401 (1995)
  2. P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P.D'Oliveira, P. Meynadier, M. Perdrix. Phys. Rev. B 55, 5799 (1997)
  3. M.J.J. Lammers, G. Blasse, D.S. Robertson. Phys. Status Solidi A 63, 569 (1981)
  4. R. Grasser, E. Pitt, A. Scharmann, G. Zimmerer. Phys. Status Solidi B 69, 359 (1975)
  5. V. Nagirnyi, E. Feldbach, L. Jonsson, M. Kirm, A. Lushchik, Ch. Lushchik, L.L. Nagornaja, V.D. Ryzhikov, F. Savikhin, G. Svensson, I.A. Tupitsina. Rad. Measurements 29, 247 (1998)
  6. V. Murk, M. Nikl, E. Mihokova, K. Nitsch. J. Phys.: Cond. Matter 9, 249 (1997)
  7. N. Saito, A. Kudo, T. Sakata. Bull. Chem. Soc. Jpn. 69, 1241 (1996)
  8. A.N. Vasil'ev. Proc. of the 5th Int. Conf. on inorganic scintillators and their applications / Ed. V.V. Mikhailin, M.V. Lomonosov Moscow State University, M. (2000). P. 43
  9. V.V. Hizhnyakov, N.N. Kristoffel. In: The dynamical Jahn--Teller effect in localized systems / Eds Yu.E. Perlin, M. Wagner. Elsevier Science Publishers B.V. (1984)
  10. J. Becker, A.N. Belsky, D. Bouttet et al. In: Proc. Int Conf. on inorganic scintillators nad their applications (SCINT95). Delft University Press, The Netherlands (1996). P. 118
  11. Ph. Daguzan, P. Martin, S. Guizard, G. Petite. Phys. Rev. B 52, 17 099 (1995)
  12. M. Herget, A. Hofstaetter, T. Nickel, A. Scharmann. Phys. Status Solidi B 141, 523 (1987)
  13. A. Watterich, L. Kovacs, R. Wurz, F. Schon, A. Hofstaetter, A. Scharmann. J. Phys.: Cond. Matter 13, 1595 (2001)
  14. V.V. Laguta, J. Rosa, M.I. Zaritskii, M. Nikl, Y. Usuki. J. Phys.: Cond. Matter 10, 7293 (1998)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.