The possibility of quantitative determination of the boundary of generalized synchronization using nearest neighbor and phase tube methods
Moskalenko O. I. 1,2, Kirillov O. A.1,2
1Saratov State University, Saratov, Russia
2Regional Scientific and Educational Mathematical Center “Mathematics of Future Technologies”, Saratov, Russia
Email: o.i.moskalenko@gmail.com

PDF
The possibility of quantitative determination of the generalized synchronization boundary in two mutually coupled systems with different attractor topology using the nearest neighbor and phase tube methods has been established. The obtained results have been compared with the results of calculating the spectrum of Lyapunov exponents for interacting systems. Estimation of the accuracy of determining the generalized synchronization boundary in comparison with known methods and approaches has been made. The obtained results have been illustrated using the examples of Ressler systems, Lorenz oscillators, Chua and Kiyashko-Pikovsky-Rabinovich generators. Keywords: generalized synchronization, mutually coupled systems, spectrum of Lyapunov exponents, nearest neighbor method, phase tube method. DOI: 10.61011/TPL.2023.09.56706.19622
  1. N. Frolov, V. Maksimenko, A. Lttjohann, A. Koronovskii, A. Hramov, Chaos, 29 (9), 091101 (2019). DOI: 10.1063/1.5117263
  2. A.A. Koronovskii, O.I. Moskalenko, A.A. Pivovarov, V.A. Khanadeev, A.E. Hramov, A.N. Pisarchik, Phys. Rev. E, 102 (1), 012205 (2020). DOI: 10.1103/PhysRevE.102.012205
  3. J. Liu, G. Chen, X. Zhao, Fractals, 29 (04), 2150081 (2021). DOI: 10.1142/S0218348X2150081X
  4. O.I. Moskalenko, A.A. Koronovskii, A.O. Selskii, E.V. Evstifeev, Tech. Phys. Lett., 48 (1), 45 (2022). DOI: 10.21883/TPL.2022.01.52468.18985
  5. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D.I. Abarbanel, Phys. Rev. E, 51 (2), 980 (1995). DOI: 10.1103/PhysRevE.51.980
  6. O.I. Moskalenko, A.A. Koronovskii, A.E. Hramov, S. Boccaletti, Phys. Rev. E, 86 (3), 036216 (2012). DOI: 10.1103/PhysRevE.86.036216
  7. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov, Phys. Rev. E, 84 (3), 037201 (2011). DOI: 10.1103/PhysRevE.84.037201
  8. K. Pyragas, Phys. Rev. E, 56 (5), 5183 (1997). DOI: 10.1103/PhysRevE.56.5183
  9. H.D.I. Abarbanel, N.F. Rulkov, M. Sushchik, Phys. Rev. E, 53 (5), 4528 (1996). DOI: 10.1103/PhysRevE.53.4528
  10. A.E. Hramov, A.A. Koronovskii, Europhys. Lett., 70 (2), 169 (2005). DOI: 10.1209/epl/i2004-10488-6
  11. O.I. Moskalenko, A.A. Koronovskii, A.E. Hramov, Phys. Rev. E, 87 (6), 064901 (2013). DOI: 10.1103/PhysRevE.87.064901
  12. A. Wolf, J. Swift, H.L. Swinney, J. Vastano, Physica D, 16 (3), 285 (1985). DOI: 10.1016/0167-2789(85)90011-9
  13. A. Uchida, R. McAllister, R. Meucci, R. Roy, Phys. Rev. Lett., 91 (17), 174101 (2003). DOI: 10.1103/PhysRevLett.91.174101
  14. U. Parlitz, L. Junge, W. Lauterborn, L. Kocarev, Phys. Rev. E, 54 (2), 2115 (1996). DOI: 10.1103/PhysRevE.54.2115
  15. O.I. Moskalenko, V.A. Khanadeev, A.A. Koronovskii, Tech. Phys. Lett., 44 (10), 894 (2018). DOI: 10.1134/S1063785018100115
  16. N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths, Phys. Rep., 438 (5-6), 237 (2007). DOI: 10.1016/j.physrep.2006.11.001
  17. V.A. Maksimenko, N.S. Frolov, A.E. Hramov, A.E. Runnova, V.V.Grubov, J. Kurths, A.N. Pisarchik, Front. Behav. Neurosci., 13, 220 (2019). DOI: 10.3389/fnbeh.2019.00220

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru