
Technical Physics Letters, 2023, Vol. 49, No. 9

01.5

The possibility of quantitative determination of the boundary of

generalized synchronization using nearest neighbor and phase tube

methods

© O.I. Moskalenko 1,2, O.A. Kirillov 1,2

1 Saratov National Research State University, Saratov, Russia
2 Regional Scientific and Educational Mathematical Center

”
Mathematics of Future Technologies“, Saratov, Russia

E-mail: o.i.moskalenko@gmail.com

Received May 5, 2023

Revised June 24, 2023

Accepted July 10, 2023

The possibility of quantitative determination of the generalized synchronization boundary in two mutually coupled

systems with different attractor topology using the nearest neighbor and phase tube methods has been established.

The obtained results have been compared with the results of calculating the spectrum of Lyapunov exponents

for interacting systems. Estimation of the accuracy of determining the generalized synchronization boundary in

comparison with known methods and approaches has been made. The obtained results have been illustrated using

the examples of Ressler systems, Lorenz oscillators, Chua and Kiyashko−Pikovsky−Rabinovich generators.
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Generalized synchronization is one of the intriguing types

of synchronous behavior that are currently being examined

actively [1–4]. This regime has first been discovered in

unidirectionally coupled systems [5], but the concept of

generalized synchronization was extended later to mutually

coupled systems and networks of coupled nonlinear ele-

ments [6]. In all these cases, generalized synchronization is

understood as the establishment of a functional between the

states of interacting systems [7]. The method of calculation

of the spectrum of Lyapunov exponents [8], the auxiliary

system approach [9], the nearest neighbor method [5], and
the phase tube method [7] are used as diagnostic techniques

for this regime.

Each of the above methods has its own advantages and

drawbacks. For example, the auxiliary system approach

provides an opportunity to identify relatively accurately

the onset of generalized synchronization in unidirectionally

coupled systems with an explicitly stated evolution operator

and is used fairly often to determine the characteristics

of intermittent behavior observed near the boundary of

this regime [2,10]. At the same time, it is inapplicable

in the examination of this regime of systems with mutual

coupling [11].

The method of calculation of the spectrum of Lyapunov

exponents is equally efficient in both unidirectionally and

mutually coupled systems, but only if the equations char-

acterizing the dynamics of interacting systems are given

explicitly. If the evolution operator is unknown (e.g., when

experimental time series are analyzed), it turns out to be

problematic to either estimate the Lyapunov exponents gov-

erning the introduction of generalized synchronization [12]
or produce an identical copy of a time series corresponding

to an auxiliary system to perform diagnostics of generalized

synchronization using the auxiliary system approach [13].
The other two mentioned techniques (nearest neighbor

and phase tube methods) are, on the contrary, approxi-

mate, but allow one to identify fairly easily the presence

of generalized synchronization by examining experimental

time series without any regard to the type of coupling

between interacting systems. The common procedure

for identifying the presence of generalized synchronization

by the nearest neighbor method involves setting several

reference states in the phase space of the first system and

finding their nearest neighbors and images in the phase

space of the second system [5,6]. If images of the nearest

neighbors are distributed throughout the whole attractor of

the second system, generalized synchronization between

interacting systems is lacking. If, in contrast, they are

confined to certain regions of the attractor corresponding to

the positioning of nearest neighbors themselves, generalized

synchronization is established.

The following parameter is traditionally used as a quan-

titative estimate of the proximity of states of interacting

systems [14]:

d =
1

Nδ

N−1
∑

k=0

‖ uk − ukn ‖, (1)

where N is the number of reference states, δ is the mean

distance between states of one of the examined systems,

x k are reference states of this system, x kn are their nearest

neighbors, and uk and ukn are the images of x k and x kn

in the phase space of the other system, respectively. This

parameter is close to unity if systems are interacting in the
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Dependences of four largest Lyapunov exponents (a) and quantitative measure d (b) on coupling parameter ε for two mutually coupled

Lorenz systems. Curves 1 and 2 in the lower panel represent the results of application of the nearest neighbor method and the phase tube

method (phase tube length T = 25), respectively. The generalized synchronization threshold is marked by an arrow in both panels. An

enlarged view of the threshold region is presented in the inset in the lower panel.

asynchronous regime and assumes near-zero values in the

regime of generalized synchronization.

The nearest neighbor method differs from the phase tube

one only in the procedure of searching for nearest neighbors.

While neighbors residing at a distance shorter than a given

length at just a specific moment of time are regarded as

the nearest ones in the first case, the phase tube method

stipulates that only the states remaining close throughout

a certain interval of time, which is called the prehistory

or the phase tube length, may be regarded as close ones.

The phase tube method has a fundamental advantage over

the nearest neighbor method in providing an opportunity

to determine precisely the presence of a functional between

states of interacting systems [7] and in retaining its efficiency

in systems with a complex (two-sheeted) attractor topology,

where the nearest neighbor method yields erroneous results

of identification of generalized synchronization [15].

A quantitative estimate of the proximity of states of

interacting systems obtained using the phase tube method

is often left unaddressed in literature. At the same time, it

is evident that the same criterion (calculation of parameter

d specified by Eq. (1)) may be used in the diagnostics of

generalized synchronization with the phase tube method,

with the sole difference being that, as was noted above,

the algorithm for searching for nearest neighbors should be

altered.

Importantly, the nearest neighbor and phase tube meth-

ods are similar in many respects to the recurrence-based

approach (see, e.g., [16,17]). The latter method finds appli-

cation in the analysis of experimental time series of various
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Table 1. Equations and control parameter values of the studied systems

Studied
Equations Parameter values

system

Ressler
ẋ1,2 = ω1,2y1,2 − z 1,2 + ε(x2,1 − x1,2) a = 0.15, b = 0.2, c = 10, ω1 = 1.00

systems
ẏ1,2 = ω1,2x1,2 + ay1,2

ω2 = 0.98
ż 1,2 = b + z 1,2(x1,2 − c)

Ressler
ẋ1,2 = σ (y1,2 − x1,2)

systems
ẏ1,2 = x1,2(r1,2 − z 1,2) − y1,2 + ε(y2,1 − y1,2) σ = 10, r1 = 28.0, r2 = 28.1, b = 8/3

ż 1,2 = x1,2y1,2 − bz 1,2

Chua generators

ẋ1,2 = c1

(

y1,2 − x1,2 − g(x1,2)
)

c1 = 15.6, c2 = 1.0, c3 = 25.580,

ẏ1,2 = c2(x1,2 − y1,2 + z 1,2) + ε(y2,1 − y1,2) g(x) = m1x + m0−m1

2
(|x + 1| − |x − 1|)

ż 1,2 = −c3y1,2

Kiyashko–
ẋ1,2 = ω1,2

(

h
(

x1,2 − ε(y2,1 − y1,2)
)

+ y1,2 − z 1,2

)

h = 0.2, m = 0.1, ω1 = 1.07, ω2 = 1.04,
Pikovsky–

ẏ1,2 = −x1,2 + ε(y2,1 − y1,2

)

f (x) = −x + 0.002 sinh(5x − 7.5) + 2.9
Rabinovich

ż 1,2 =
(

x1,2 − f (z 1,2)
)

/m
generators

Table 2. Boundaries of generalized synchronization determined for the examined systems by calculating the spectrum of Lyapunov

exponents, the nearest neighbor method, and the phase tube method

Studied system

Method of calculation Nearest neighbor Phase tube

of the spectrum of method method

Lyapunov exponents Boundary Accuracy Boundary Accuracy

Ressler systems 0.104 0.116 0.115 0.116 0.115

Lorenz systems 1.4 1.44 0.029 1.4 0

Chua generators 1.04 0.92 0.115 0.9 0.135

Kiyashko− 0.06 0.088 0.467 0.08 0.333

Pikovsky−Rabinovich generators

nature (including such analysis that is aimed at identifying

different types of chaotic synchronization). In order to check

for the presence of generalized synchronization, one needs

to construct recurrence plots for each interacting system and

a joint recurrence plot for both systems for every value of

the system coupling parameter. The issue of determination

of the threshold of generalized synchronization with this

method is often left undiscussed in literature.

The present study is the first attempt at quantitative

determination of the threshold of generalized synchroniza-

tion in mutually coupled systems with different attrac-

tor topologies via the nearest neighbor and phase tube

methods. Ressler and Lorenz systems and Chua and

Kiyashko−Pikovsky−Rabinovich generators are examined

as examples of such systems. The equations and control

parameter values of the studied systems are listed in

Table 1. The control parameter values were chosen

so that all interacting systems remained in the chaotic

regime: band chaos was observed in Ressler systems

and Kiyashko−Pikovsky−Rabinovich generators, while the

attractors in Lorenz systems and Chua generators had a

two-sheeted structure. In addition to the nearest neighbor

and phase tube methods, the method of calculation of the

spectrum of Lyapunov exponents was also used to identify

generalized synchronization.

Dependences of four largest Lyapunov exponents and

quantitative measure d on coupling parameter ε for two

mutually coupled Lorenz systems are presented in the figure

for illustrative purposes. It is evident that the second-

largest Lyapunov exponent enters the region of negative

values at ε = 1.4, which corresponds to the introduction

of generalized synchronization into the examined system.

Dependences d(ε) calculated using the nearest neighbor

and phase tube methods reach saturation at approximately

the same coupling parameter value. The saturation level is

sufficiently high in the case of the nearest neighbor method

and near-zero for the phase tube method.

Similar results were obtained for other systems. To

illustrate this, the boundaries of generalized synchronization

calculated for all four systems mentioned above with the

use of three examined methods are listed in Table 2.

It can be seen that, although the numerical values of

synchronization thresholds differ slightly, the differences are

insignificant (especially so in the case of the phase tube

method). Therefore, these approaches may be applied
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in both qualitative and quantitative determination of the

boundary of generalized synchronization.
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