High temperature light emitting diamond pin diode based on nitrogen-vacancy luminescence centers
Buga S.G
1, Kornilov N. V.
1, Kuznetsov M. S.
1, Luparev N. V.
1, Prikhodko D. D.
1, Tarelkin S. A.
1, Drozdova T. E.
1, Blank V. D.
11Technological Institute for Superhard and Novel Carbon Materials, Moscow, Russia
Email: buga@tisnum.ru, nvkor@bk.ru, mikuz@yandex.ru, luparev@gmail.com, dmprikhodko@gmail.com, sergey.tarelkin@gmail.com, t.shpitontseva@mail.ru, blankvlad@gmail.com
A diamond light-emitting p-i-n-diode has been fabricated from a nitrogen-doped synthetic single crystal diamond (n-type conductivity) grown at high pressure and temperature, and thin layers grown by homoepitaxial growth from the gas phase: i-layer of low-doped diamond with nitrogen-vacancy optically active centers and a highly boron-doped layer (p-type conductivity). Volt-ampere characteristics and electroluminescence spectra were studied for the first time at temperatures in the range 300-680oC. The emission spectrum at T=450oC has a maximum in the region of 590-610 nm and is similar to the electroluminescence spectra of nitrogen-vacancy centers previously observed at room temperature in diamond p-i-n-diodes with n-layers doped with phosphorus. The intensity of the emission increases in proportion to the electrical power of the diode current. Keywords: nitrogen-doped diamond, diamond pin diode, volt-ampere characteristics, electroluminescence, high temperatures.
- A. Lohrmann, S. Pezzagna, I. Dobrinets, P. Spinicelli, V. Jacques, J.-F. Roch, J. Meijer, A.M. Zaitsev, Appl. Phys. Lett., 99, 251106 (2011). DOI: 10.1063/1.3670332
- N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, Nat. Photon., 6, 299 (2012). DOI: 10.1038/NPHOTON.2012.75
- M.A. Lobaev, D.B. Radishev, S.A. Bogdanov, A.L. Vikharev, A.M. Gorbachev, V.A. Isaev, S.A. Kraev, A.I. Okhapkin, E.A. Arhipova, M.N. Drozdov, V.I. Shashkin, Phys. Status Solidi (RRL), 14, 2000347 (2020). DOI: 10.1002/pssr.202000347
- M. Haruyama, H. Kato, M. Ogura, Y. Kato, D. Takeuchi, S. Yamasaki, T. Iwasaki, H. Morishita, M. Fujiwara, N. Mizuochi, T. Makino, Appl. Phys. Lett., 122, 072101 (2023). DOI: 10.1063/5.0138050
- V.G. Vins, E.V. Pestryakov, Diamond Rel. Mater., 15, 571 (2006). DOI: 10.1016/j.diamond.2005.11.038
- A. Savvin, A. Dormidonov, E. Smetanina, V. Mitrokhin, E. Lipatov, D. Genin, S. Potanin, A. Yelisseyev, V. Vins, Nat. Commun., 12, 7118 (2021). DOI: 10.1038/s41467-021-27470-7
- S.G. Buga, A.S. Galkin, M.S. Kuznetsov, N.V. Kornilov, N.V. Luparev, D.D. Prikhodko, S.A. Tarelkin, V.D. Blank, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 65 (11), 27 (2022) (in Russian). DOI: 10.6060/ivkkt.20226511.7y
- R.G. Farrer, Solid State Commun., 7, 685 (1969). DOI: 10.1016/0038-1098(69)90593-6
- F.J. Heremans, G.D. Fuchs, C.F. Wang, R. Hanson, D.D. Awschalom, Appl. Phys. Lett., 94, 152102 (2009). DOI: 10.1063/1.3120225
- M. Katagiri, J. Isoya, S. Koizumi, H. Kanda, Appl. Phys. Lett., 85, 6365 (2004). DOI: 10.1063/1.1840119
- I.A. Khramtsov, D.Yu. Fedyanin, Semicond. Sci. Technol., 34, 03LT03 (2019). DOI: 10.1088/1361-6641/ab0569
- Yu.N. Palyanov, Yu.M. Borzdov, A.F. Khokhryakov, I.N. Kupriyanov, A.G. Sokol, Cryst. Growth Des., 10, 3169 (2010). DOI: 10.1021/cg100322p
- U.F.S. D'Haenens-Johansson, J.E. Butler, A.N. Katrusha, Rev. Miner. Geochem., 88, 689 (2022). DOI: 10.2138/rmg.2022.88.13
- S.G. Buga, G.M. Kvashnin, M.S. Kuznetsov, N.V. Kornilov, N.V. Luparev, M. Yao, Semiconductors, 57 (5), 360 (2023). DOI: 10.21883/FTP.2023.05.56206.4748
- V.S. Bormashov, S.A. Terentiev, S.G. Buga, S.A. Tarelkin, A.P. Volkov, D.V. Teteruk, N.V. Kornilov, V.D. Blank, Diamond Rel. Mater, 75, 78 (2017). DOI: 10.1016/j.diamond.2017.02.006
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.