Self-ignition of hydrogen-air mixture during the interaction of a shock wave with a destructible granular screen or permeable wall
Golovastov S. V. 1, Bivol G Yu. 1, Kuleshov F. S.1, Golub V. V. 1
1Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: golovastov@yandex.ru, grigorij-bivol@yandex.ru, kuleshovfs179@gmail.com, golub@ihed.ras.ru

PDF
The process of self-ignition of a hydrogen-air mixture during the interaction of a shock wave with a destructible granular screen or permeable wall was studied experimentally. The wall was made of polyurethane, the destructible screen was made of quartz sand with a small amount of binder. The parameters of incident, reflected and transmitted shock waves were determined at an initial pressure of 0.02 MPA and a molar hydrogen concentration of 14%. Conditions were determined under which the placement of the destructible screen may be appropriate to prevent spontaneous ignition of the mixture. Keywords: destructible screen, shock wave, hydrogen, ignition.
  1. A.G. John, K.D. Gardner, F.K. Lu, V.V. Volodin, S.V. Golovastov, V.V. Golub, in Proc. 25th Int. Symp. on shock waves (Bangalore, India, 2005), p. 11. https://arc.uta.edu/publications/cp_files/10044.pdf
  2. D.Z. Khusnutdinov, A.V. Mishuev, V.V. Kazennov, A.A. Komarov, N.V. Gromov, Avariinye vzryvy gazovozdushnykh smesei v atmosfere (Minobrnauki RF, Mosk. Gos. Stroit. Univ., M., 2014), p. 69 (in Russian)
  3. G.Yu. Bivol, V.V. Volodin, Yu.V. Zhilin, V.M. Bocharnikov, High Temp., 57 (1), 130 (2019). DOI: 10.1134/S0018151X19010024
  4. H. Lv, Z. Wang, J. Li, Int. J. Multiph. Flow, 89, 255 (2017). DOI: 10.1016/j.ijmultiphaseflow.2016.07.019
  5. Y. Sugiyama, M. Izumo, H. Ando, A. Matsuo, Shock Waves, 28 (3), 627 (2018). DOI: 10.1007/s00193-018-0813-5
  6. A. Britan, G. Ben-Dor, O. Igra, H. Shapiro, Int. J. Multiph. Flow, 27 (4), 617 (2001). DOI: 10.1016/S0301-9322(00)00048-3
  7. T. Schunck, D. Eckenfels, SN Appl. Sci., 3 (8), 731 (2021). DOI: 10.1007/s42452-021-04720-3
  8. O.A. Mirova, A.L. Kotel'nikov, V.V. Golub, T.V. Bazhenova, High Temp., 53 (1), 155 (2015). DOI: 10.1134/S0018151X15010174
  9. O. Igra, J. Falcovitz, L. Houas, G. Jourdan, Prog. Aerosp. Sci., 58, 1 (2013). DOI: 10.1016/j.paerosci.2012.08.003
  10. A.M. Tereza, G.L. Agafonov, E.K. Anderzhanov, A.S. Betev, S.P. Medvedev, S.V. Khomik, Rus. J. Phys. Chem. B, 16 (4), 686 (2022). DOI: 10.1134/S1990793122040297
  11. V.V. Martynenko, O.G. Penyaz'kov, K.A. Ragotner, S.I. Shabunya, J. Eng. Phys. Thermophys., 77 (4), 785 (2004). DOI: 10.1023/B:JOEP.0000045164.40205.6f

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru