Hydrodynamic heat transfer localization in impinging gas jet
Lemanov V. V.1, Lukashov V. V.1, Sharov K. A.1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: lemanov@itp.nsc.ru

PDF
The results of an experimental study of heat transfer in an impinging air jet flowing from a long round channel in the range of Reynolds numbers 250-10000 are presented. Data on local heat transfer in the region of the flow stagnation point at large distances to the barrier (h/d = 20) were obtained. It is shown that a more localized heat flow corresponds to a laminar flow in a jet source compared to the case of a turbulent regime in the source. The maximum heat transfer is achieved not for the Poiseuille profile in the channel, but in the case of a transition regime with a small percentage of turbulent vortex structures. Keywords: impinging jet, heat transfer, laminar-turbulent transition, vortex structure.
  1. B.V. Rumyantsev, S.I. Pavlov, Tech. Phys. Lett., 46, 843 (2020). DOI: 10.1134/S1063785020090102
  2. J.F. de la Mora, J. Rosell-Llompart, J. Chem. Phys., 91, 2603 (1989). DOI: 10.1063/1.456969
  3. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett., 82, 364 (2003). DOI: 10.1063/1.1537519
  4. B. Dash, J. Nanda, S.K. Rout, Heat Transfer, 51, 1406 (2022). DOI: 10.1002/htj.22357
  5. C.J. Chang, H. Chen, C. Gau, Nanoscale Microscale Thermophys. Eng., 17, 92 (2013). DOI: 10.1080/15567265.2012.761304
  6. B.N. Yudaev, M.S. Mikhailov, V.K. Savin, Teploobmen pri vzaimodeistvii strui s pregradami (Mashinostroenie, M., 1977) (in Russian)
  7. S.D. Barewar, M. Joshi, P.O. Sharma, P.S. Kalos, B. Bakthavatchalam, S.S. Chougule, K. Habib, S.K. Saha, Therm. Sci. Eng. Prog., 39, 101697 (2023). DOI: 10.1016/j.tsep.2023.101697
  8. V.V. Lemanov, V.I. Terekhov, High Temp., 54, 454 (2016). DOI: 10.1134/S0018151X1603010X
  9. S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov, The science and practice of heat flux measurement (Springer Nature, 2020)
  10. V.V. Lemanov, V.V. Lukashov, K.A. Sharov, Fluid Dyn., 55, 768 (2020). DOI: 10.1134/S0015462820060087
  11. K. Avila, D. Moxey, A. Lozar, M. Avila, D. Barkley, B. Hof, Science, 333, 192 (2011). DOI: 10.1126/science.1203223
  12. C.M. Ho, P. Huerre, Annu. Rev. Fluid Mech., 16, 365 (1984). DOI: 10.1146/annurev.fl.16.010184.002053
  13. A.S. Ginevsky, Ye.V. Vlasov, R.K. Karavosov, Acoustic control of turbulent jets (Springer, Berlin-Heidelberg, 2004)
  14. V.V. Lemanov, V.I. Terekhov, K.A. Sharov, A.A. Shumeiko, Tech. Phys. Lett., 39, 421 (2013). DOI: 10.1134/S1063785013050064
  15. V.M. Aniskin, V.V. Lemanov, N.A. Maslov, K.A. Mukhin, V.I. Terekhov, K.A. Sharov, Tech. Phys. Lett., 41, 46 (2015). DOI: 10.1134/S1063785015010034
  16. C. Bogey, C. Bailly, Phys. Fluids, 18, 065101 (2006). DOI: 10.1063/1.2204060

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru