Features of the development of electrohydrodynamic instability of the molten metal boundary in a strong electric field
Barengolts S. A.
1,2, Zubarev N. M.
2,3, Kochurin E. A.
31Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: sabarengolts@mail.ru, nick@iep.uran.ru, kochurin@iep.uran.ru
The dynamics of the instability development of the free boundary of liquid metal (molten copper) in a strong electric field of about 108 V/cm has been studied. Under such local fields, natural submicron-scale protrusions on the cathode surface melt due to the flow of field emission current through them. Electrohydrodynamic instability of the melt boundary leads to a sharpening of the boundary, which provides a local increase in the electric field and, as a consequence, accelerates the processes of vacuum breakdown. It has been demonstrated that the feature of electrohydrodynamic instability under the considered conditions is the need to take into account viscous effects. A relatively simple nonlinear model is proposed to describe them. Keywords: Electrohydrodynamic instability, molten metal, vacuum breakdown.
- A Multi-TeV linear collider based on CLIC technology, CLIC conceptual design report, ed. by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte, N. Toge (CERN, Geneva, 2012), CERN-2012-007. DOI: 10.5170/CERN-2012-007
- W. Wuensch, Advances in the understanding of the physical processes of vacuum breakdown, CLIC-Note-1025 (CERN, Geneva, 2013), CERN-OPEN-2014-028
- G.A. Mesyats, D.I. Proskurovsky, Pulsed electrical discharge in vacuum (Springer, Berlin, 1989)
- I.V. Uimanov, D.L. Shmelev, S.A. Barengolts, J. Phys. D: Appl. Phys., 54 (6), 065205 (2021). DOI: 10.1088/1361-6463/abc213
- S.A. Barengolts, G.A. Mesyats, Phys. Usp., 66 (7), 704 (2023). DOI: 10.3367/UFNe.2022.02.039163
- L. Tonks, Phys. Rev., 48 (6), 562 (1935). DOI: 10.1103/PhysRev.48.562
- Ya.I. Frenkel, Journal of Experimental and Theoretical Physics, 6 (4), 348 (1936)
- G.I. Taylor, Proc. R. Soc. Lond. A., 280 (1382), 383 (1964). DOI: 10.1098/rspa.1964.0151
- V.G. Suvorov, N.M. Zubarev, J. Phys. D: Appl. Phys., 37 (2), 289 (2004). DOI: 10.1088/0022-3727/37/2/019
- T.G. Albertson, S.M. Troian, Phys. Fluids, 31 (10), 102103 (2019). DOI: 10.1063/1.5123742
- L.D. Landau, E.M. Lifshitz, Fluid mechanics. Course of theoretical physics (Pergamon Press, 2013), vol. 6
- X. Gao, A. Kyritsakis, M. Veske, W. Sun, B. Xiao, G. Meng, Y. Cheng, F. Djurabekova, J. Phys. D: Appl. Phys., 53 (36), 365202 (2020). DOI: 10.1088/1361-6463/ab9137
- N.M. Zubarev, JETP, 87 (6), 1110 (1998). DOI: 10.1134/1.558601
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.