Features of the development of electrohydrodynamic instability of the molten metal boundary in a strong electric field
Barengolts S. A. 1,2, Zubarev N. M. 2,3, Kochurin E. A. 3
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
Email: sabarengolts@mail.ru, nick@iep.uran.ru, kochurin@iep.uran.ru

PDF
The dynamics of the instability development of the free boundary of liquid metal (molten copper) in a strong electric field of about 108 V/cm has been studied. Under such local fields, natural submicron-scale protrusions on the cathode surface melt due to the flow of field emission current through them. Electrohydrodynamic instability of the melt boundary leads to a sharpening of the boundary, which provides a local increase in the electric field and, as a consequence, accelerates the processes of vacuum breakdown. It has been demonstrated that the feature of electrohydrodynamic instability under the considered conditions is the need to take into account viscous effects. A relatively simple nonlinear model is proposed to describe them. Keywords: Electrohydrodynamic instability, molten metal, vacuum breakdown.
  1. A Multi-TeV linear collider based on CLIC technology, CLIC conceptual design report, ed. by M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte, N. Toge (CERN, Geneva, 2012), CERN-2012-007. DOI: 10.5170/CERN-2012-007
  2. W. Wuensch, Advances in the understanding of the physical processes of vacuum breakdown, CLIC-Note-1025 (CERN, Geneva, 2013), CERN-OPEN-2014-028
  3. G.A. Mesyats, D.I. Proskurovsky, Pulsed electrical discharge in vacuum (Springer, Berlin, 1989)
  4. I.V. Uimanov, D.L. Shmelev, S.A. Barengolts, J. Phys. D: Appl. Phys., 54 (6), 065205 (2021). DOI: 10.1088/1361-6463/abc213
  5. S.A. Barengolts, G.A. Mesyats, Phys. Usp., 66 (7), 704 (2023). DOI: 10.3367/UFNe.2022.02.039163
  6. L. Tonks, Phys. Rev., 48 (6), 562 (1935). DOI: 10.1103/PhysRev.48.562
  7. Ya.I. Frenkel, Journal of Experimental and Theoretical Physics, 6 (4), 348 (1936)
  8. G.I. Taylor, Proc. R. Soc. Lond. A., 280 (1382), 383 (1964). DOI: 10.1098/rspa.1964.0151
  9. V.G. Suvorov, N.M. Zubarev, J. Phys. D: Appl. Phys., 37 (2), 289 (2004). DOI: 10.1088/0022-3727/37/2/019
  10. T.G. Albertson, S.M. Troian, Phys. Fluids, 31 (10), 102103 (2019). DOI: 10.1063/1.5123742
  11. L.D. Landau, E.M. Lifshitz, Fluid mechanics. Course of theoretical physics (Pergamon Press, 2013), vol. 6
  12. X. Gao, A. Kyritsakis, M. Veske, W. Sun, B. Xiao, G. Meng, Y. Cheng, F. Djurabekova, J. Phys. D: Appl. Phys., 53 (36), 365202 (2020). DOI: 10.1088/1361-6463/ab9137
  13. N.M. Zubarev, JETP, 87 (6), 1110 (1998). DOI: 10.1134/1.558601

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru