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Features of the development of electrohydrodynamic instability of the

molten metal boundary in a strong electric field
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The dynamics of the instability development of the free boundary of liquid metal (molten copper) in a strong

electric field of about 108 V/cm has been studied. Under such local fields, natural submicron-scale protrusions on

the cathode surface melt due to the flow of field emission current through them. Electrohydrodynamic instability

of the melt boundary leads to a sharpening of the boundary, which provides a local increase in the electric field

and, as a consequence, accelerates the processes of vacuum breakdown. It has been demonstrated that the feature

of electrohydrodynamic instability under the considered conditions is the need to take into account viscous effects.

A relatively simple nonlinear model is proposed to describe them.
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Studies of the physical processes leading to vacuum

breakdown have received a new impetus in development

due to the development of accelerating equipment at

terawatt power levels [1]. It is the vacuum breakdown of the

accelerating structure when it is exposed to electromagnetic

pulses of nanosecond duration that is the main problem on

the way to achieving high accelerating gradients [2]. The

study of nanosecond vacuum breakdown has shown [3]
that its main mechanism is the formation of a conducting

medium (plasma) on the cathode due to heating by the

field emission high-density current of microprotrusions with

the highest coefficients β of electric field amplification.

The analysis of the heating of copper microprotrusions

has shown [4,5] that the field strength at their vertices to

realize this mechanism in accelerating structures [1] is on

the order of 108 V/cm (for characteristic values β = 50−100

this corresponds to a macroscopic field of 1−2MV/cm).
The purpose of the present work is to analyze the

features of the development of electrohydrodynamic (EHD)
instability [6,7] of the molten metal surface in strong fields

on the order of 108 V/cm. This instability determines

the tendency for unrestricted surface sharpening. As a

result, after melting of the microprotrusion, its geometrical

parameters will change (increase β) and, as a consequence,

pre breakdown processes will be accelerated.

Let us begin the analysis with estimates that will demon-

strate the specifics of the development of EHD-instability

of molten metal in fields three orders of magnitude higher

than the instability threshold Ec = (4ε−2
0 ρgα)1/4 [7], where

ε0 is electrical constant, ρ is density, g is free fall accel-

eration, α is surface tension coefficient (for liquid copper

Ec ≈ 8.5 · 104 V/cm). For simplicity we will consider the

boundary of the fluid in the unperturbed state as flat.

The function η sets its perturbation — deviation from

the plane. In the instability analysis, the boundary η is

sought as a plane wave: η(x , t) ∝ exp(ikx − iωt), where

x is coordinate, t is time, k > 0 is wave number, ω is

frequency. The linear (corresponding to the condition of

smallness of slope angles) dynamics of the boundary is

described by the dispersion relation (the relation between

the values ω and k), which for an incompressible nonviscous

perfectly conducting fluid in an external homogeneous field

of strength E has the form [7]:

ρω2 = −ε0E2k2 + αk3. (1)

It can be seen from (1) that ω is imaginary in the region of

relatively small wave numbers 0 < k < kc ≡ ε0E2/α, which

corresponds to the aperiodic instability of the boundary (at
k > kc capillary forces suppress the destabilizing effect of

electrostatic forces). The development of instability leads

(at its nonlinear stages) to the formation of conical tips with

opening angle 98.6◦ — Taylor cones [8,9]. The fastest de-

veloping instability will be for the wave number kd = 2kc/3

(the dominant mode of instability), which defines the scale

of the conical formations as λd = 2π/kd ∝ E−2. The

characteristic time of instability development (the time for

which the perturbation amplitude increases by a factor of

e ≈ 2.718) is τd = 1/γd ∝ E−3, where γd = Imω(kd) is

instability increment. As can be seen, λd and τd decrease

rapidly as E increases. Reducing the characteristic scales

of the problem will inevitably lead to the fact that the ideal

fluid approximation ceases to work and it will be necessary

to take into account the viscosity of the medium (see, for
example, [9,10]). According to the calculations [10], viscous
effects cause the angle of the forming cone to decrease.
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Figure 1. Dependence of the EHD-instability increment γ on

the wave number k with (solid line) and without (dashed line)
viscous effects. Field E = Eν ≈ 9.8 · 107 V/cm; liquid copper at

melting point.

Note also the factor of additional heating of metal at its

rapid deformations due to viscous friction.

We show that in fields of order 108 V/cm the role of

viscous effects becomes comparable to that of capillary ef-

fects, and discuss how this affects the dynamics of the

instability. The law of dispersion taking viscosity into

account can be obtained by taking the well-known formula

for gravitational waves [11] and making a formal substitution

ρgk → −ε0E2k2 + αk3 in it, corresponding to the fact that

instead of gravity we will consider electrostatic and capillary

forces. We obtain (here ν is kinematic viscosity)

ρ(2νk2
− iω)2 − ε0E2k2 + αk3 = 4ρν3/2k3

√
νk2 − iω.

(2)
It follows from the analysis (2) that it is possible

to introduce a characteristic value of field strength

Eν = αν−1ε
−1/2
0 ρ−1/2, depending only on the fluid pa-

rameters, such that at E ≪ Eν viscous effects can be

neglected, and at E ≫ Eν they will determine the dy-

namics of instability. When the fields are comparable

with Eν , the most complicated case is realized when viscous

forces will be comparable to electrostatic and capillary

forces. For liquid copper at melting point, we can take

ρ = 8.0 · 103 kg/m3, α = 1.3N/m, ν = 5.0 · 10−7 m2/s. We

find Eν ≈ 9.8 · 107 V/cm, which falls exactly within the field

range of interest.

Let us consider how the EHD instability develops at

fields of order Eν . We will be interested in the solutions

of the dispersion law (2) b describing the development

of aperiodic instability. This corresponds to the fact that

ω = iγ , where γ > 0 is instability increment. In Fig. 1 for

E = Eν , the dashed and solid lines show the dependences of

γ from k without and with viscosity (formulas (1) and (2),
respectively). It can be seen that our conclusion about the

essential influence of viscous effects on the development

of instability at such a field is correct. The wave number

of the dominant mode (kd) decreases by a factor of 1.6,

and the corresponding increment (γd) — by a factor of

2.2. The characteristic spatial and temporal scales are

λd ≈ 23 nm and τd ≈ 27 ps. The range of wave numbers

for which the surface is unstable remains unchanged (scale
over 2π/kc ≈ 10 nm). In the case of the melt formed at the

tip of the cathode protrusion, we can identify the radius of

the tip apex R with a quarter of a wavelength for estimates,

which gives R > 2−6 nm. These dimensions correlate

with those considered in [12], where the deformation of

the cathode tip with R = 1−10 nm was modeled by the

molecular dynamics method. At R > 3 nm, the threshold

value of the field at which the pulling of the copper nano-

protrusion began was in the range (10.5−11.5) · 107 V/cm,

i.e., close to the value Eν . According to calculations [12],
the stretching occurred in times of tens to hundreds of

picoseconds at high temperatures much higher than the

melting temperature. Considered by us EHD-mechanism

of sharpening the top of the protrusion does not require the

achievement of high temperatures, and can be realized at

lower fields (see below) in the case of increasing the scale

of the melt region from units to tens of nanometers.

When developing a nonlinear model for the development

of instability, it is important that the relationship of γ and k
be described by the simplest possible expression. So, in the

limit k ≪ kc we have a linear dependence γ ≈ ε
1/2
0 ρ−1/2Ek ,

which allowed us to construct a model describing the

nonlinear evolution of the boundary up to the formation of

singularities — points with infinite curvature. For a viscous

fluid, we encounter the difficulty that the expression for the

dispersion law (2) is very cumbersome and unsolvable with

respect to frequency (increment). However, it turns out that
the relation described by (2) between γ and k in the special

case E = Eν/2 is perfectly approximated by the parabolic

relation

γ ≈ α(2ρν)−1k − 2νk2. (3)

Fig. 2 shows the exact dependence γ(k) (solid line) and

the given by (3) approximation (dashed line). As can be

seen, expression (3), despite its simplicity, reflects all the

main features of the exact dispersion law in the whole range

of wave numbers 0 < k < kc determining the development

of instability. This is extremely important when analyzing

the nonlinear stages of instability, at which energy pumping

from large-scale harmonics to small-scale harmonics takes

place; it is this process that leads to the formation of tips.

We propose that when E = Eν/2 the following nonlinear

model be used to describe the development of EHD-

instability in the case of flat symmetry of the problem:

ηt = −α(2ρν)−1Ĥηx +2νηxx +α(4ρν)−1
[
(Ĥηx )

2
− (ηx )

2
]
.

(4)
Here ηt and ηx denote the partial derivatives on t and x ,
respectively; Ĥ is the Hilbert operator having the property

Ĥeikx = isgn(k)eikx . The linear part of (4) corresponds

to the approximate dispersion law (3) and allows us to

adequately account for the influence of both electrostatic,

capillary, and viscous forces. The nonlinear part of
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Figure 2. Dependence of the EHD-instability increment γ

on the wave number k for the exact dispersion law (solid
line) and the parabolic approximation (dashed line). Field

E = Eν/2 ≈ 4.9 · 107 V/cm; liquid copper at melting point.
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Figure 3. Evolution of the molten metal surface within

the framework of the nonlinear model (4). The dotted line

corresponds to the initial time point t = 0, the solid line — the

moment of singularity formation t = tc . For comparison, the

dashed line shows the shape of the boundary at the moment t = tc

for the situation when its evolution is described within the linear

approximation (nonlinear terms are discarded in equation (4)).
Field E = Eν/2 ≈ 4.9 · 107 V/cm; liquid copper at melting point.

(4) corresponds to the model from [13], in which only

electrostatic forces were considered.

Let us consider in the framework of the model equation

(4) the dynamics of singularity formation at the free

boundary of the liquid. We consider that the fluid occupies

a space bounded region −L/2 6 x 6 L/2. We set the

initial shape of the boundary as η(x , 0) = A cos(2πx/L)
with L = 360 nm (as applied to the melt at the tip apex, this

corresponds to a radius of about 100 nm) and an amplitude

of A = 0.01L. Equation (4) was solved numerically based

on spectral methods with harmonic number N = 8096. Due

to the specificity of the methodology used, the boundary

conditions in space were taken as periodic. Time integration

was performed by the explicit Runge−Kutt method of

fourth-order accuracy with step dt = 2.2 · 10−15 s. The

evolution of the boundary perturbation is demonstrated

in Fig. 3. It can be seen that there is an unbounded

sharpening of the surface in a finite time — by the moment

t = tc ≈ 0.73 ns. This time is not directly determined by the

dominant mode of instability, for which the characteristic

time is much smaller: it is ∼ 0.16 ns (Fig. 2). The time tc is

composed of the time of the main harmonic (k = 2π/L)
amplitude rise (the corresponding characteristic time is

∼ 0.41 ns) and the time of energy pumping from the main

harmonic to the dominant harmonic due to their nonlinear

interaction. The scale of the emerging tip can be estimated

as the width of the region in which the tangent of the

slope angle exceeds one. It amounted to ∼ 30 nm, which

is expectedly close to half the length of the dominant mode

(∼ 40 nm).
Also in Fig. 3, the solution of the linearized equation (4)

to the moment t = tc is shown by the dashed line.

From the comparison of linear and nonlinear solutions,

it is clear that the nonlinear terms in (4) accelerate the

development of instability, and it is they that cause the

formation of singularity. Thus, model (4), despite its relative

simplicity, shows a tendency to sharpen the boundary and,

consequently, to increase the field enhancement factor β .

In connection with the fact that this growth occurs at fields

at the apex of a submicron-sized microprotrusion smaller

than the breakdown fields, it can be concluded that melting

of the apex will inevitably lead to an acceleration of vacuum

breakdown.
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