Study of the processes of formation of nanosized compounds in high-temperature superconductor materials upon implantation of Ba+ ions
Tashmukhamedova D. A.
1, Urokov A. N. 1
1Tashkent State Technical University, Tashkent, Uzbekistan
Email: ftmet@mail.ru
In this work, we have studied for the first time the effect of Ba ions implantation on the CuOY2O3BaO ceramics composition and band gap Eg, as well as on the number of valence electrons, by using the methods of Auger electron spectroscopy and spectroscopy of characteristic electron energy losses and by measuring energy dependences of secondary electron emission coefficient σ. It is shown that, after ion implantation, the value of σ increases in the entire investigated range of primary electron energy Ep. This increase is practically independent of the substrate temperature in the range T=85-300 K. Band gap Eg increases from 0.5 to 4.5 eV, which is explained by the formation of a thin (~ 40-50 Angstrem) layer enriched with barium oxide. Keywords: ion implantation, band gap, secondary electron emission coefficient, Auger spectrum, superconducting properties, ceramics.
- D.V. Masterov, S.A. Pavlov, A.E. Parafin, Yu.N. Drozdov, Tech. Phys., 52 (10), 1351 (2007). DOI: 10.1134/S1063784207100167
- R.-Z. Cao, L.-J. Zhang, L.-Y. Ding, X.-P. Liu, X.-Y. Liu, P. Jin, S.-T. Liu, H.-Ch. Tao, Comput. Mater. Sci., 7, 111558 (2022). DOI: 10.1016/j.commatsci.2022.111558
- V.A. Gurinovich, F.P. Korshunov, V.K. Shesholko, Dokl. BGUIR, N 1 (9), 69 (2005). https://libeldoc.bsuir.by/handle/123456789/30832 (in Russian)
- Y. Zhang, X. Xu, Physica C, 595, 1354031 (2022). DOI: 10.1016/j.physc.2022.1354031
- A.V. Varlashkin, B.I. Massalimov, V.P. Martovitsky, Bull. Lebedev Phys. Inst., 45 (4), 99 (2018). DOI: 10.3103/S1068335618040012
- A. Kujur, D. Behera, J. Magn. Magn. Mater., 377 (3), 34 (2015). DOI: 10.1016/j.jmmm.2014.10.004
- B.P. Mikhailov, I.A. Rudaev, A.V. Bochko, V.F. Shamray, A.B. Mikhailova, B.V. Spitsin, Sverkhprovodyashchy kompozitsionny material na osnove VTSP-soedineniy i sposob ego polucheniya, patent RF, bul. N 24 (2012). (in Russian)
- S.S. Kostinsky, Problemy energetiki, 20 (1-2), 14 (2018). DOI: 10.30724/1998-9903-2018-20-1-2-14-32 (in Russian)
- S.M. Anlage, J. Opt., 13 (2), 024001 (2011). DOI: 10.1088/2040-8978/13/2/024001
- S.Kh. Gadzhimagomedov, D.K. Palchaev, Zh.Kh. Murlieva, G.Sh. Shapiev, R.M. Emirov, N.M.-R. Alikhanov, F.F. Orudzhev, M.Kh. Gadzhiev, P.M. Saypulaev, A.E. Rabadanova, Vestn. Dagestan. gos. un-ta, 35 (4), 79 (2020). DOI: 10.21779/2542-0321-2020-35-4-79-89 (in Russian)
- A.E. Shchukin, A.R. Kaul, A.L. Vasiliev, I.A. Rudnev, Kondensirovannye sredy i mezhfaznye granitsy, 23 (1), 122 (2021). DOI: 10.17308/kcmf.2021.23/3313 (in Russian)
- V.A. Maevsky, V.V. Aseev, A.S. Ivlev, N.A. Nizhelsky, M.A. Sysoev, V.V. Sinyavsky, Kosmicheskaya tekhnika i tekhnologiya, N 2 (25), 14 (2019). (in Russian) DOI: 10.33950/spacetech-2308-7625-2019-2-14-27
- B.A. Belyaev, I.V. Govorun, A.A. Leksikov, A.M. Serzhantov, Tech. Phys. Lett., 38 (3), 211 (2012). DOI: 10.1134/S1063785012030066
- D.A. Tashmukhamedova, B.E. Umirzakov, M.A. Mirzhalilova, Izv. RAN. Ser. fiz., 68 (3), 424 (2004). https://www.elibrary.ru/item.asp?id=17641066 (in Russian)
- Kh.Kh. Boltaev, D.A. Tashmukhamedova, B.E. Umirzakov, J. Surf. Investig., 8 (2), 326 (2014). DOI: 10.1134/S1027451014010108.
- D.A. Tashmukhamedova, Izv. RAN. Ser. fiz., 70 (8), 1230 (2006). https://elibrary.ru/item.asp?id=9296378 (in Russian)
- B.E. Umirzakov, J.Sh. Sodikjanov, D.A. Tashmukhamedova, A.A. Abduvayitov, E.A. Rabbimov, Tech. Phys. Lett., 47, 620 (2021). DOI: 10.1134/S1063785021060262
- D.A. Tashmukhamedova, M.B. Yusupjanova, J. Surf. Investig., 15 (5), 1054 (2021). DOI: 10.1134/S1027451021050402.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.