Simulation of focused ion beam milling of multilayer substrates
Rumyantsev A. V.1, Borgardt N. I.1, Volkov R. L.1
1National Research University of Electronic Technology, Zelenograd, Moscow, Russia

The level set method was generalized for simulating the evolution of the surface of multilayer substrates under focused ion beam irradiation. For a correct description of such process the calculations took into account the sputtering yield angular dependences, the densities of the irradiated materials and it was considered that sputtered atoms can escape from different layers of the substrate. Comparison of the calculation results with experimental data for test structures formed in a two-layer silicon dioxide-crystalline silicon substrate showed that the developed simulation method makes it possible to predict the shape of structures fabricated by a focused ion beam with good accuracy. Keywords: Focused ion beam, sputtering, level set method.
  1. A.C. Madison, J.S. Villarrubia, K.T. Liao, C.R. Copeland, J. Schumacher, K. Siebein, B.R. Ilic, J.A. Liddle, S.M. Stavis, Adv. Funct. Mater., 32 (38), 2111840 (2022). DOI: 10.1002/adfm.202111840
  2. S. Herschbein, S. Tan, R. Livengood, M. Wong, in Proc. of the ISTFA-2022 (Pasadena, California, USA, 2022), p. i1-i69. DOI: 10.31399/asm.cp.istfa2022tpi1
  3. A.S. Payusov, M.I. Mitrofanov, G.O. Kornyshov, A.A. Serin, G.V. Voznyuk, M.M. Kulagina, V.P. Evtikhiev, N.Yu. Gordeev, M.V. Maximov, S. Breuer, Tech. Phys. Lett., 48 (15), 87 (2022). DOI: 10.21883/TPL.2022.15.54275.18980
  4. H.B. Kim, G. Hobler, A. Steiger, A. Lugstein, E. Bertagnolli, Nanotechnology, 18 (26), 265307 (2007). DOI: 10.1088/0957-4484/18/26/265307
  5. N.I. Borgardt, R.L. Volkov, A.V. Rumyantsev, Yu.A. Chaplygin, Tech. Phys. Lett., 41 (6), 610 (2015). DOI: 10.1134/S106378501506019X
  6. A.V. Rumyantsev, N.I. Borgardt, R.L. Volkov, Yu.A. Chaplygin, Vacuum, 202, 111128 (2022). DOI: 10.1016/j.vacuum.2022.111128
  7. A.A. Tseng, I.A. Insua, J.S. Park, C.D. Chen, J. Micromech. Microeng., 15 (1), 20 (2004). DOI: 10.1088/0960-1317/15/1/004
  8. W. Boxleitner, G. Hobler, Nucl. Instrum. Meth. Phys. Res. B, 180 (1-4), 125 (2001). DOI: 10.1016/S0168-583X(01)00406-2
  9. F. Gibou, R. Fedkiw, S. Osher, J. Comput. Phys., 353, 82 (2018). DOI: 10.1016/
  10. N.I. Borgardt, A.V. Rumyantsev, J. Vac. Sci. Technol. B, 34 (6), 061803 (2016). DOI: 10.1116/1.4967249
  11. P. Manstetten, J. Weinbub, A. Hossinger, S. Selberherr, Proc. Comput. Sci., 108, 245 (2017). DOI: 10.1016/j.procs.2017.05.067
  12. L.A. Giannuzzi, F.A. Stevie, Micron, 30 (3), 197 (1999). DOI: 10.1016/S0968-4328(99)00005-0
  13. V.I. Bachurin, I.V. Zhuravlev, D.E. Pukhov, A.S. Rudy, S.G. Simakin, M.A. Smirnova, A.B. Churilov, J. Surf. Investig., 14 (4), 784 (2020). DOI: 10.1134/S1027451020040229
  14. L. Frey, C. Lehrer, H. Ryssel, Appl. Phys. A, 76 (7), 1017 (2003). DOI: 10.1007/s00339-002-1943-1

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245