A high-selectivity waveguide bandpass filter with interference suppression by more than 120 dB in rejection band
Belyaev B. A.1,2, Serzhantov A. M. 1,2,3, Leksikov A. A.3, Bal’va Ya. F.3, Alexandrovsky A.A.3, Galeev R. G.1
1Siberian State University of Science and Technology, Krasnoyarsk, Russia
2Siberian State University, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: belyaev@iph.krasn.ru, cubicus@mail.ru, a.a.leksikov@gmail.com, slava_saa@mail.ru, a.a.aleksandrovskiy@gmail.com, krtz@mail.ru

PDF
The design of a 10th-order waveguide bandpass filter with an additional inductive cross-coupling between non-adjacent resonators has been proposed and studied. An inductive coupling is formed by a U-shaped conductor structure with grounded ends that is formed in the filter cover. This method of cross-coupling organization ensures not only the temperature stability of the characteristics, but also the manufacturability of the structure. The high selectivity of the device is achieved by both the attenuation poles located near the passband, as well as the level of suppression in the stopbands, exceeding 120 dB. The passband loss of the fabricated filter is ~ 0.8 dB at its central frequency f0=18.2 GHz and relative bandwidth Δ f/f0=1.5%. The small dimensions (135x 30x 10 mm) and the weight of about 200 g of the device, with simultaneously high electrical characteristics show the promise of its use, for example, in on-board and ground-based space communication systems Keywords: bandpass filter, waveguide, resonator, cross-coupling.
  1. M. Yu, W.C. Tang, A. Malarky, V. Dokas, R. Cameron, Y. Wang, IEEE Trans. Microwave Theory Tech., 51 (12), 2505 (2003). DOI: 10.1109/TMTT.2003.820172
  2. I.B. Vendik, O.G. Vendik, K.N. Zemlyakov, I.V. Kolmakova, M.F. Sitnikova, P.A. Tural'chuk, D.V. Masterov, S.A. Pavlov, A.E. Parafin, Tech. Phys. Lett., 37 (5), 421 (2011). DOI: 10.1134/S1063785011050166
  3. J.-S. Hong, Microstrip filters for RF/microwave applications (John Wiley \& Sons, N.Y., 2011), p. 315
  4. B.A. Belyaev, Y.F. Bal'va, V.V. Tyurnev, A.A. Leksikov, R.G. Galeev, Microwave Opt. Technol. Lett., 56 (9) 2021 (2014). DOI: 10.1002/mop.28507
  5. R.M Kurzrok, IEEE Trans. Microwave Theory Tech., 14 (6), 295 (1966). DOI: 10.1109/TMTT.1966.1126254
  6. Y. Wang, M. Yu, IEEE Trans. Microwave Theory Tech., 57 (12), 2958 (2009). DOI: 10.1109/TMTT.2009.2034221
  7. J. Kocbach, K. Folgero, IEEE MTT-S Int. Microwave Symp. Digest, 3, 1449 (2002). DOI: 10.1109/MWSYM.2002.1012128
  8. B.A. Belyaev, A.M. Serzhantov, Ya.F. Bal'va, R.G. Galeev, An.A. Leksikov, IEEE Trans. Compon. Packag. Manuf. Technol., 12 (7), 1186 (2022). DOI: 10.1109/TCPMT.2022.3183581
  9. M. Latif, G. Macchiarella, F. Mukhtar, IEEE Access, 8 (7), 107527 (2020). DOI: 10.1109/ACCESS.2020.3000847
  10. B.A. Belyaev, A.M. Serzhantov, Ya.F. Bal'va, An.A. Leksikov, E.O. Grushevskii, Tech. Phys. Lett., 45 (5), 485 (2019). DOI: 10.1134/S1063785019050225.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru