Creation of an antireflection coating for the optical range based on a nanoporous germanium layer formed by implantation with indium ions
Stepanov A. L.
1, Nuzhdin V. I.1, Valeev V. F.1, Konovalov A. L.1, Rogov A. M.1
1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
Email: aanstep@gmail.com
The possibility of using a nanoporous Ge layer formed by implantation with 115In+ ions on a monocrystal c-Ge substrate as an antireflection optical coating (In:PGe) was studied. For this purpose, ion implantation of c-Ge wafers was performed at an energy E=30 keV, current density in the ion beam J=5 μA/cm2, and dose D=1.8· 1016 ion/cm2. It was shown that the fabricated In:PGe spongy layer, which consists of intertwining Ge nanowires, is characterized by a low reflectivity (~ 5%) in a wide optical spectral range of 250-1050 nm. Keywords: nanoporous germanium, ion implantation, antireflection optical coating.
- R. Kaufmann, G. Isella, A. Sanchez-Amores, S. Neukom, A. Neels, L. Neumann, A. Brenzikofer, A. Domman, C. Urban, H. von Kanel, J. Appl. Phys., 110, 023107 (2011). DOI: 10.1063/1.3608245
- L. Tang, S.E. Kocabas, S. Latif, A.K. Okyay, D.S. Ly-Gagnon, K.C. Sarawat, D.A.B. Miller, Nat. Photonics, 2, 226 (2008). DOI: 10.1038/nphoton.2008.30
- N.E. Posthuma, J. van der Heide, G. Flamand, J. Poortmans, IEEE Trans. Electron. Dev., 54, 1210 (2007). DOI: 10.1109/TED.2007.894610
- H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energy Environ. Sci., 4, 3779 (2011). DOI: 10.1039/c1ee01297e
- N. Shanmugam, R. Pugazhendhi, R.M. Elavarasan, P. Kasiviswanathan, N. Das, Energies, 13, 2631 (2020). DOI: 10.3390/en13102631
- S.B. Khan, H. Wu, C. Pan, Z. Zhang, Res. Rev.: J. Mater. Sci., 5, 36 (2017). DOI: 10.4172/2321-6212.1000192
- L.R. Gilbert, R. Messier, R. Roy, Thin Solid Films, 54, 149 (1978). DOI: 10.1016/0040-6090(78)90191-8
- L.R. Chueh, Z. Fan, K. Takei, H. Ko, R. Karadia, A.A. Rathore, N. Miller, K. Yu, M. Wu, E.E. Haller, A. Javey, Nano Lett., 10, 520 (2010). DOI: 10.1021/nl903366z
- J.W. Leem, Y.P. Kim, J.S. Yu, J. Opt. Soc. Am. B, 29, 357 (2012). DOI: 10.1364/JOSAB.29.000357
- S. Schicho, A. Jaouad, C. Sellmer, D. Morris, V. Aimez, R. Ares, Mater. Lett., 94, 86 (2013). DOI: 10.1016/j.matlet.2012.12.014
- D.P. Datta, T. Som, Solar Energy, 223, 367 (2021). DOI: 0.1016/j.solener.2021.05.016
- A.M. Rogov, V.I. Nuzhdin, V.F. Valeev, A.L. Stepanov, Compos. Commun., 19, 6 (2020). DOI: 10.1016/j.coco.2020.01.002
- A.L. Stepanov, V.I. Nuzhdin, A.M. Rogov, V.V. Vorob'ev, Formirovanie sloev poristogo kremnija i germanija s metallicheskimi nanochasticami (Kazan. Nauchn. Tesntr Ross. Akad. Nauk, Kazan', 2019) (in Russian)
- F.D. Auret, P.J.J. van Rensburg, M. Hayes, J.M. Nel, W.E. Meyer, S. Decoster, V. Matias, A. Vantomme, Appl. Phys. Lett., 89, 152123 (2006). DOI: 10.1063/1.2360922
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Meth. Phys. Res. B, 268, 1818 (2010). DOI: 0.1016/j.nimb.2010.02.091
- J. Tauc, Progr. Semiconductors, 9, 89 (1965)
- T.M. Donovan, W.E. Spicer, J.M. Bennett, E.J. Ashley, Phys. Rev. B, 2, 397 (1970). DOI: 10.1103/PhysRevB.2.397
- H. Liu, S. Li, P. Sun, X. Yang, D. Liu, Y. Ji, F. Zhang, D. Chen, Y. Cui, Mater. Sci. Semicond. Process., 83, 58 (2018). DOI: 10.1016/j.mssp.2018.04.019
- K.L. Bhatia, P. Singh, M. Singh, N. Kishore, N.C. Mehra, D. Kanjilal, Nucl. Instrum. Meth. Phys. Res. B, 94, 379 (1994). DOI: 10.1016/0168-583X(94)95412-7
- K. Chen, J. Isometsa, T.P. Pasanen, V. Vahanissi, H. Savin, Nanotechnology, 32, 35301 (2021). DOI: 10.1088/1361-6528/abbeac
- C. Ji, W. Liu, Y. Bao, X. Chen, G. Yang, B. Wei, F. Yang, X. Wang, Photonics, 9, 906 (2022). DOI: 10.3390/photonics9120906
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.