Growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires
Koryakin A.A.
1, Eremeev Yu.A.2, Fedina S.V.3, Fedorov V. V.
3
1St. Petersburg State University, St. Petersburg, Russia
2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
3Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: burunduk.uk@gmail.com
The growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires is investigated. Within the framework of a theoretical model, the maximal monolayer coverage due to the material in the catalyst droplet, the nanowire growth rate and the content of group V atoms in the droplet are found depending on the growth conditions. The estimates of the phosphorus re-evaporation coefficient from neighboring nanowires and substrate are obtained by comparing the theoretical and experimental growth rate of Ga-catalyzed GaP nanowires. Keywords: III-V nanowires, vapor-liquid-solid growth mechanism, nucleation
- C.-Y. Wen, J. Tersoff, K. Hillerich, M.C. Reuter, J.H. Park, S. Kodambaka, E.A. Stach, F.M. Ross, Phys. Rev. Lett., 107 (2), 025503 (2011). DOI: 10.1103/PhysRevLett.107.025503
- D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Nature, 531 (7594), 317 (2016). DOI: 10.1038/nature17148
- J.-C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Phys. Rev. Lett., 121 (16), 166101 (2018). DOI: 10.1103/PhysRevLett.121.166101
- F. Panciera, Z. Baraissov, G. Patriarche, V.G. Dubrovskii, F. Glas, L. Travers, U. Mirsaidov, J.-C. Harmand, Nano Lett., 20 (3), 1669 (2020). DOI: 10.1021/acs.nanolett.9b04808
- C.B. Maliakkal, E.K. Martensson, M.U. Tornberg, D. Jacobsson, A.R. Persson, J. Johansson, L.R. Wallenberg, K.A. Dick, ACS Nano, 14 (4), 3868 (2020). DOI: 10.1021/acsnano.9b09816
- F. Glas, V.G. Dubrovskii, Phys. Rev. Mater., 4 (8), 083401 (2020). DOI: 10.1103/PhysRevMaterials.4.083401
- V.G. Dubrovskii, A.S. Sokolovskii, I.V. Shtrom, Tech. Phys. Lett., 46 (9), 889 (2020). DOI: 10.1134/S1063785020090187
- A.A. Koryakin, S.A. Kukushkin, Phys. Status Solidi B, 258 (6), 2000604 (2021). DOI: 10.1002/pssb.202000604
- V.G. Dubrovskii, Tech. Phys. Lett., 46 (4), 357 (2020). DOI: 10.1134/S1063785020040203
- V.G. Dubrovskii, Cryst. Growth Des., 17 (5), 2589 (2017). DOI: 10.1021/acs.cgd.7b00124
- F. Glas, M.R. Ramdani, G. Patriarche, J.-C. Harmand, Phys. Rev. B, 88 (19), 195304 (2013). DOI: 10.1103/PhysRevB.88.195304
- V.A. Gorokhov, T.T. Dedegkaev, Y.L. Ilyin, V.A. Moshnikov, A.S. Petrov, Y.M. Sosov, D.A. Yaskov, Cryst. Res. Technol., 19 (11), 1465 (1984). DOI: 10.1002/crat.2170191112
- M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Cryst. Growth Des., 13 (1), 91 (2013). DOI: 10.1021/cg301167g
- A.D. Bolshakov, V.V. Fedorov, N.V. Sibirev, M.V. Fetisova, E.I. Moiseev, N.V. Kryzhanovskaya, O.Y. Koval, E.V. Ubyivovk, A.M. Mozharov, G.E. Cirlin, I.S. Mukhin, Phys. Status Solidi (RRL), 13 (11), 1900350 (2019). DOI: 10.1002/pssr.201900350
- V.V. Fedorov, Y. Berdnikov, N.V. Sibirev, A.D. Bolshakov, S.V. Fedina, G.A. Sapunov, L.N. Dvoretckaia, G. Cirlin, D.A. Kirilenko, M. Tchernycheva, I.S. Mukhin, Nanomaterials, 11 (8), 1949 (2021). DOI: 10.3390/nano11081949
- S. Mirbt, N. Moll, K. Cho, J.D. Joannopoulos, Phys. Rev. B, 60 (19), 13283 (1999). DOI: 10.1103/PhysRevB.60.13283
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.