Peculiarities of nucleation and growth of InGaN nanowires on SiC/Si substrates by HVPE
Kukushkin S. A.
1,2, Osipov A. V.
1,2, Redkov A. V.
1,2, Stozharov V. M.
3, Ubiyvovk E. V.
1, Sharofidinov Sh. Sh.
41St. Petersburg State University, St. Petersburg, Russia
2Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
3Scientific and Technical Center New Technologies ( STC NT), Saint-Petersburg, Russia
4Ioffe Institute, St. Petersburg, Russia
Email: sergey.a.kukushkin@gmail.com, avredkov@gmail.com, ubyivovk@gmail.com, culkand@gmail.com
The growth of InGaN layers on hybrid SiC/Si substrates with orientations (100), (110), and (111) by the HVPE method was studied at temperatures that wittingly exceed the temperature of InN decomposition onto nitrogen atoms and metallic In (1000oC). On substrates with orientations (110) and (111), the formation of InGaN whisker nanocrystals was observed. The shape and growth mechanisms of nanocrystals were investigated. It is shown that nanocrystals nucleate on the (111) surface only inside V-defects formed at the points where screw dislocations exit onto the surface. On the (110) surface, nanocrystals are formed only on pedestals that arise during the film growth. An explanation is given for the difference in the growth mechanisms of nanocrystals on substrates of different orientations. Keywords: InGaN, heterostructures, SiC on Si, silicon, whisker nanocrystals, nanostructures, atomic substitution method
- V.O. Gridchin, K.P. Kotlyar, R.R. Reznik, A.S. Dragunova, N.V. Kryzhanovskaya, V.V. Lendyashova, D.A. Kirilenko, I.P. Soshnikov, D.S. Shevchuk, G.G. Cirlin, Nanotechnology, 32 (33), 335604 (2021). DOI: 10.1088/1361-6528/ac0027
- E. Roche, Y. Andre, G. Avit, C. Bougerol, D. Castelluci, F. Reveret, G. Evelyne, F. Medard, J. Leymarie, T. Jean, V.G. Dubrovskii, A. Trassoudaine, Nanotechnology, 29 (46), 465602 (2018). DOI: 10.1088/1361-6528/aaddc1
- H. Hijazi, M. Zeghouane, J. Jridi, E. Gil, D. Castelluci, V.G. Dubrovskii, C. Bougerol, Y. Andre, A. Trassoudaine, Nanotechnology, 32 (15), 155601 (2021). DOI: 10.1088/1361-6528/abdb16
- V.O. Gridchin, R.R. Reznik, K.P. Kotlyar, A.S. Dragunova, N.V. Kryzhanovskaya, A.Yu. Serov, S.A. Kukushkin, G.E. Cirlin, Pis'ma Zh. Tekh. Fiz., 47 (21), 32 (2021) (in Russian). DOI: 10.21883/PJTF.2021.21.51626.18894
- Y. Sato, S. Sato, J. Cryst. Growth, 144 (1-2), 15 (1994). DOI: 10.1016/0022-0248(94)90004-3
- H. Sunakawa, A. Atsushi Yamaguchi, A. Kimura, A. Usui, Jpn. J. Appl. Phys., 35 (11A), L1395 (1996). DOI: 10.1143/JJAP.35.L1395
- N. Takahashi, J. Ogasawara, A. Koukitu, J. Cryst. Growth, 172 (3-4), 298 (1997). DOI: 10.1016/S0022-0248(96)00751-8
- I. Grzegory, S. Krukowski, J. Jun, M. Bockowski, M. Wroblewski, S. Porowski, AIP Conf. Proc., 309 (1), 565 (1994). DOI: 10.1063/1.46099
- K. Hanaoka, H. Murakami, Y. Kumagai, A. Koukitu, J. Cryst. Growth, 318 (1), 441 (2011). DOI: 10.1016/j.jcrysgro.2010.11.079
- S.A. Kukushkin, A.V. Osipov, Pis'ma Zh. Tekh. Fiz., 47 (19), 51 (2021) (in Russian). DOI: 10.21883/PJTF.2021.19.51516.18879
- B. Dzuba, T. Nguyen, Y. Cao, R.E. Diaz, M.J. Manfra, O. Malis, J. Appl. Phys., 130 (10), 105702 (2021). DOI: 10.1063/5.0058154
- S.A. Kukushkin, A.V. Osipov, J. Appl. Phys., 113 (2), 024909 (2013). DOI: 10.1063/1.4773343
- S.A. Kukushkin, Sh.Sh. Sharofidinov, Phys. Solid State, 61 (12), 2342 (2019). DOI: 10.1134/S1063783419120254
- Sh.Sh. Sharofidinov, S.A. Kukushkin, A.V. Red'kov, A.S. Grashchenko, A.V. Osipov, Tech. Phys. Lett., 45 (7), 711 (2019). DOI: 10.1134/S1063785019070277
- S.A. Kukushkin, Sh.Sh. Sharofidinov, A.V. Osipov, A.V. Redkov, V.V. Kidalov, A.S. Grashchenko, I.P. Soshnikov, A.F. Dydenchuk, ECS J. Solid State Sci. Technol., 7 (9), P480 (2018). DOI: 10.1149/2.0191809jss
- A.V. Redkov, S.A. Kukushkin, Cryst. Growth Des., 20 (4), 2590 (2020). DOI: 10.1021/acs.cgd.9b01721
- S. Hernandez, R. Cusco, D. Pastor, L. Artus, K.P. O'Donnell, R.W. Martin, I.M. Watson, Y. Nanishi, E. Calleja, J. Appl. Phys., 98 (1), 013511 (2005). DOI: 10.1063/1.1940139
- S. Tripathy, S.J. Chua, P. Chen, Z.L. Miao, J. Appl. Phys., 92 (7), 3503 (2002). DOI: 10.1063/1.1502921
- Y.Y. Hervieu, J. Cryst. Growth, 568-569, 126187 (2021). DOI: 10.1016/j.jcrysgro.2021.126187
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.