Temperature dependence of Debye frequency and Gruneisen parameter in the low temperature range
Magomedov M. N. 1
1Institute for geothermal problems and renewable energy – branch of the joint Institute of high temperatures of the Russian Academy of Sciences, Makhachkala, Russia
Email: mahmag4@mail.ru

PDF
The Debye temperature (Theta) is an important characteristic of a crystal and the Theta values for specific substances are presented in many reference books and monographs. However, for many substances, the experimentally determined Theta value changes with temperature (T). It is shown that in the presence of a functional dependence Theta(T), the expressions for entropy and isochoric heat capacity should include terms with the first and second derivatives of the Theta(T) function with respect to temperature. Therefore, for the fulfillment of the third law of thermodynamics for an n-dimensional crystal, the function Theta(T) and the temperature dependence of the Gruneisen parameter γ(T) at low temperatures must change according to the dependence (T/Theta_0)n+1. At this, the Theta0 value differs from the Theta0s value, which was determined from the experimental temperature dependence of the heat capacity, without taking into account the dependence Theta(T). It is shown that if the Theta(T) function decreases, then the γ(T) function increases with increasing temperature from the values Theta_0>Theta0s and γ_0>γ0s, respectively. At average temperatures, the Theta(T) function has a minimum, and the γ(T) function has a maximum. If the Theta(T) function increases from Theta_0<Theta0s to a maximum, then the γ(T) function decreases from γ_0<γ0s to a minimum. A method for determining the temperature dependence of the Theta(T) function was proposed. Keywords: entropy, isochoric heat capacity, Debye temperature, Gruneisen parameter, graphene.
  1. G. Leibfried. Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle (Springer-Verlag, Berlin, 1955)
  2. A.A. Maradudin, E.W. Montroll, G.H. Weiss. Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, London 1963)
  3. M. Abramowitz, I. Stegun (eds.) Handbook of Mathematical Functions (National Bureau of Standards, NY., 1964) https://www.math.hkbu.edu.hk/support/aands/intro.htm
  4. T.H.K. Barron, J.G. Collins, G.K. White. Adv. Phys., 29 (4), 609 (1980). DOI: 10.1080/00018738000101426
  5. J. Rosen, G. Grimvall. Phys. Rev. B, 27 (12), 7199 (1983). DOI: 10.1103/PhysRevB.27.7199
  6. T. Tohei, A. Kuwabara, F. Oba, I. Tanaka. Phys. Rev. B, 73 (6), 064304 (2006). DOI: 10.1103/PhysRevB.73.064304
  7. S. Ahmed, M. Zafar, M. Shakil, M.A. Choudhary. Chinese Phys., B 25 (3), 036501 (2016). DOI: 10.1088/1674-1056/25/3/036501
  8. R. Passler. Rec. Prog. Mater., 3 (4), 1 (2021). DOI: 10.21926/rpm.2104042
  9. R. Tomaschitz. J. Phys. Chem. Solids, 152, 109773 (2021). DOI: 10.1016/j.jpcs.2020.109773
  10. A. Aliakbari, P. Amiri. Mater. Chem. Phys., 270, 124744 (2021). DOI: 10.1016/j.matchemphys.2021.124744
  11. J. Biele, M. Grott, M.E. Zolensky, A. Benisek, E. Dach. Int. J. Thermophys., 43 (9), 144 (2022). DOI: 10.1007/s10765-022-03046-5
  12. M.N. Magomedov. Phys. Solid State, 45 (1), 32 (2003). DOI: 10.1134/1.1537405
  13. I.V. Aleksandrov, A.F. Goncharov, A.N. Zisman, S.M. Stishov. Sov. Phys. JETP, 66 (2), 384 (1987). http://jetp.ras.ru/cgi-bin/dn/e_066_02_0384.pdf
  14. O.L. Anderson. Geophys. J. Intern., 143 (2), 279 (2000). DOI: 10.1046/j.1365-246X.2000.01266.x
  15. M.N. Magomedov. Tech. Phys., 55 (9), 1382 (2010). DOI: 10.1134/S1063784210090240
  16. R. Passler. Phys. Stat. Solidi (b), 247 (1), 77 (2010). DOI: 10.1002/pssb.200945158
  17. O.L. Anderson. J. Phys. Chem. Solids, 24 (7), 909 (1963). DOI: 10.1016/0022-3697(63)90067-2
  18. A. Konti. Debye temperature of some cubic elements and alkali halides (Doctoral diss., University of Ottawa, Canada, 1970), 92 p. https://ruor.uottawa.ca/ server/api/core/bitstreams/ed4a321b-30a3-4fcc-9395-9f39db 316a7b/content
  19. H. Siethoff, K. Ahlborn. Phys. Stat. Solidi (b), 190 (1), 179 (1995). DOI: 10.1002/pssb.2221900126
  20. H. Righi, M. Mokhtari, F. Dahmane, S. Benalia, M. Merabet, L. Djoudi, Y. Djabellah. Chinese J. Phys., 66, 124 (2020). DOI: 10.1016/j.cjph.2020.04.017
  21. A. Azam, N. Erum, R. Sharma, V. Srivastava, S. Al-Qaisi, A.A. Ghfar, H. Ullah, Z. Ahmed. Opt. Quant. Electr., 56 (6), 1001 (2024). DOI: 10.1007/s11082-024-06891-w
  22. N.O. Nenuwe, S.E. Kpuwhara. Phys. B: Cond. Matt., 685, 416002 (2024). DOI: 10.1016/j.physb.2024.416002
  23. N.L. Lethole, P. Mukumba. Materials, 17 (15), 3879 (2024). DOI: 10.3390/ma17153879
  24. S. Ramachandran, O.E. Vilches. Phys. Rev. B, 76 (7), 075404 (2007). DOI: 10.1103/PhysRevB.76.075404
  25. X.X. Ren, W. Kang, Z.F. Cheng, R.L. Zheng. Chinese Phys. Lett., 33 (12), 126501 (2016). DOI: 10.1088/0256-307X/33/12/126501
  26. M.S. Barabashko, M.I. Bagatskii, A.V. Dolbin, V.V. Sumarokov. Low Temp. Phys., 49 (8), 979 (2023). DOI: 10.1063/10.0020166
  27. M.N. Magomedov. Tech. Phys., 58 (9), 1297 (2013). DOI: 10.1134/S106378421309020X
  28. M.N. Magomedov. Phys. Sol. State, 64 (7), 765 (2022). DOI: 10.21883/PSS.2022.07.54579.319

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru