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Temperature dependence of Debye frequency and Grüneisen parameter
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The Debye temperature (2) is an important characteristic of a crystal and the 2 values for specific substances are

presented in many reference books and monographs. However, for many substances, the experimentally determined

2 value changes with temperature (T ). It is shown that in the presence of a functional dependence 2(T ), the
expressions for entropy and isochoric heat capacity should include terms with the first and second derivatives of

the 2(T ) function with respect to temperature. Therefore, for the fulfillment of the third law of thermodynamics

for an n-dimensional crystal, the function 2(T ) and the temperature dependence of the Grüneisen parameter

γ(T ) at low temperatures must change according to the dependence (T/20)
n+1 . At this, the 20 value differs

from the 20s value, which was determined from the experimental temperature dependence of the heat capacity,

without taking into account the dependence 2(T ). It is shown that if the 2(T ) function decreases, then the γ(T )
function increases with increasing temperature from the values 20 > 20s and γ0 > γ0s , respectively. At average

temperatures, the 2(T ) function has a minimum, and the γ(T ) function has a maximum. If the 2(T ) function

increases from 20 < 20s to a maximum, then the γ(T ) function decreases from γ0 < γ0s to a minimum. A method

for determining the temperature dependence of the 2(T ) function was proposed.
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Introduction

The Debye temperature (2) is an important parameter

that determines various properties of a substance. The

2 value also approximates the temperature limit below

which quantum effects begin to affect. Therefore, much

attention is paid to the determination of the 2value in both

experimental and theoretical studies.

In the traditional Debye theory, it is assumed that the

2 value does not dependent on temperature (T ) [1,2].
Then the expressions for calculating free energy (FD),
entropy (SD = −(∂FD/∂T )V ) and isochoric heat ca-

pacity (CD = T (∂SD/∂T )V = −T (∂2FD/∂T 2)V ) of an n-

dimensional molecular crystals are obtained in the following

form
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Here NA is the Avogadro number, ni is the number

of ions (or atoms) in a molecule, kB is the Boltzmann

constant, V is the crystal volume, n = 1, 2, 3, Debn(x) is

the Debye function for an n-dimensional crystal, which has

the form [3]:

Debn(x) =
n

xn

x
∫

0

tn

[exp(t) − 1]
dt. (4)

At low temperatures, the Debn(x) function can be trans-

formed to the form

Debn(x ≫ 1) ∼=
nAn

xn
− n exp(−x) ∼=

nAn

xn
, (5)

where An = n! ζ (n + 1), ζ (n + 1) is the Riemann zeta

function [3]: ζ (2) = π2/6, ζ (3) = 1.202057, ζ (4) = π4/90,

i.e. A1 = π2/6, A2 = 2.404114, A3 = π4/15.

The 2 value for specific substances, experimentally

determined based on the temperature dependence of the

heat capacity under the assumption of independence of

2 from T , are presented in many reference books and
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monographs. At the same time, many substances show a

dependence of the 2 value on the temperature [1,2,4–11].
If we take into account the presence of such a dependence,

then the expressions (2)−(3) will contain derivatives of the

2(T ) function in temperature and will have a more complex

form [12]:
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where S and C is the entropy and isochoric heat capacity

of a substance in which the 2 value is found to depend on

temperature.

These expressions have the following form for the low

temperature region (T ≪ 2(T ))
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Here the functions s∗D low and c∗

D low have the traditional

Debye form [1,2]:

s∗D low
∼=
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(11)
It can be seen from (9) that if the 2 parameter in the

low temperature region has a functional dependence on

temperature, then the 2(T ) value should be determined

from the experimental dependence c∗(T )low using a differ-

ential equation. However, even today, the 2(T ) value is

determined using the power equation (11) [1,2,4–11].
At low temperatures, the 2(T ) function should have such

a dependence that (8) and (9) satisfy the third law of

thermodynamics in Planck’s statement

lim
T→0 K

S

nNAni kB

= 0, lim
T→0 K

C

nNAni kB

= 0. (12)

This imposes certain restrictions on the functional depen-

dency 2(T ). These constraints are studied in this paper and

a correct dependence is obtained for the 2(T ) function in

the low temperature region.

1. Calculating method and results

Since in most cases the experimentally determined de-

pendence 2(T ) decreases with increasing temperature from

20 = 2(T = 0K) [1,2,4–11], we assume the formula of the

folllowing form for the 2(T ) function at low temperatures

2(T )low = 20

[

1− χn

(

T

20

)k]

, (13)

where χn is a numerical coefficient.

Then from (8)−(11), limiting to linear terms in (T/20)
n

with T ≪ 20 , it is easy to obtain
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It can be seen from (14) and (15) that for any χn, the

functions s∗low and c∗

low are zero at T = 0K. However, in

order to comply with the dependency c∗

low ∝ (T/20)
n, the

condition k ≥ n + 1 must be met. In addition, the following

condition must be met for s∗low ≥ 0 and c∗

low ≥ 0 to be

satisfied with χn < 0

2(n + 1)2

nk
An

(

T

20

)n+1−k

≥ −χn = |χn| > 0. (16)

It follows from (16) that it is necessary to assume

k = n + 1 for the χn < 0 value to be independent of

temperature. Also, it follows from (16) with χn < 0

and k > n + 1 that the functions s∗low and c∗

low have maxima

for Tmax/20 > 0, after which the functions s∗low and c∗

low

will decrease with the increase of T/20. Since the presence

of these maxima contradicts the experiments, we must

assume k = n + 1. The values of the maxima are easily

found from (14) and (15):

Tmax(s)

20

=

[

2(n + 1)2An

k(k − 1)|χn|

]1/[k−(n+1)]

,

Tmax(c)

20

=

[

2(n + 1)2n An

k(k − 1)2|χn|

]1/[k−(n+1)]

. (17)

It can be seen from (17) that in order for the tempera-

tures of the maxima to coincide, i.e. to meet the condition:

Tmax(s) = Tmax(c), k = n + 1 must also be satisfied. At

the same time, the values of the maxima go to infinity,

i.e. become unattainable. Thus, it can be argued that for an
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n-dimensional crystal, the parameters included in (13) must

satisfy the conditions

k = n + 1, χn > −
2(n + 1)An

n
. (18)

An expression for the Grüneisen parameter in the

following form can be obtained from the dependence (13)

γ(T )low = −

(

∂ ln2(T )low

∂ lnV

)

T

= γ0 +
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(

T
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The following designations are introduced here:

γ0 = −

(

∂ ln20

∂ lnV

)

T=0 K

, λn = −

(

∂ ln χn

∂ lnV

)

T

. (20)

The Grüneisen parameter determines the degree of

increase in the Debye temperature during isothermal com-

pression of the crystal. The λn parameter determines the

degree of increase of the χn value in case of the isothermal

compression of the crystal. It should be noted that there

are two Grüneisen parameters in the literature (depending
on the method of experimental determination): vibrational
and thermodynamic [4,13–15]. The Grüneisen vibration

parameter is determined by the change in the frequency

of atomic vibrations (ω) in case of crystal compression:

γ = (∂ lnω/∂ lnV )T . The Grüneisen thermodynamic pa-

rameter is determined by the ratio of the isobaric coefficient

of thermal expansion (αp = (∂ lnV/∂T )P), the isothermal

elastic modulus (BT = −V (∂P/∂V )T), volume (V ) and

isochoric heat capacity (C): γTh = αpBTV/C . It should

be noted that this expression for γTh is incorrect in case

of a presence of the temperature dependence 2(T ) [15].
This is due to the fact that, according to (7), the heat

capacity will include terms with the first and second

derivatives of the function 2(T ) in temperature, and the

value αpBT = (∂S/∂V )T will depend on the first derivative

of the function 2(T ) in temperature. This leads to a

difference between the values γ and γTh . Here we study

the Grüneisen vibration parameter γ .

The dependence in (15) will correspond to the exper-

imental one for k = n + 1, but the calculation of the 20

value will need to be performed not from (11), but from
the expression that follows from (15):

c∗

low
∼=

[

(n + 1)n An +
n2

2
χn

](

T

20

)n

. (21)

This leads to a correction in the Debye temperature cal-

culated from (11) at T = 0K. By equating the expressions

for the heat capacities from (11) and (21), we can obtain

20
∼= 20s

[

1 +
n

2(n + 1)An

χn

]1/n

, (22)

where 20s is the value determined from the experimental

values of the heat capacity without taking into account the

dependence 2(T )low , i.e. 20s is calculated from the power

equation (11).
The expression for the Grüneisen parameter will have the

following form from Eq. (22)

γ0 = −

(

∂ ln20

∂ lnV

)

T=0 K

= γ0s +
χnλn

2(n + 1)An + nχn

. (23)

where γ0s is the value of the Grüneisen parameter deter-

mined from the function 20s(V ), i.e. without taking into

account the temperature dependence 2(T )low :

γ0s = −

(

∂ ln20s

∂ lnV

)

T=0 K

.

Thus, the function 2(T )low decreases at χn > 0 with

increasing temperature (this follows from (13)), and the

function γ(T )low increases (this follows from (19)). The

function 2(T )low decreases from 20 > 20s (this inequality
follows from (22)), and the function γ(T )low increases

from γ0 > γ0s (this follows from (23)). Since at high

temperatures (T ≫ 20) the function 2(T ) does not go into

the range of negative values (as it should be following (13)),
but has a positive value comparable to 20 (as it follows

from the experimental data), the function 2(T ) should have

a minimum in the range of average temperatures. The

function γ(T ) at high temperatures does not go to infinity

(as it should be, following (19)), and has a finite value,

therefore, the function γ(T ) should have a maximum in the

range of average temperatures. It should be noted that our

formulas do not imply the presence of these extremes, since

these formulas are obtained under the condition T ≪ 20.

Therefore, it is impossible to estimate the position of these

extremes from these formulas. However, the existence

of these extremes follows from the physical definition of

the functions 2(T ) and γ(T ), according to which these

functions must have a finite positive value. The presence

of extremes has also been pointed out in many papers, for

example, in Res. [1,2,4,5,10].
At χn < 0, the picture changes to the opposite: the

function 2(T )low increases with increasing temperature

from 20 < 20s , and the function γ(T )low decreases

from γ0 < γ0s . In both cases, the change in the func-

tions 2(T )low and γ(T )low must be proportional to the

dependence (T/20)
n+1 for fulfillment of the third principle

of thermodynamics in the form of (12). It should be

noted that in the case of χn > 0 and k > n + 1, or for

χn = 0, the functions s∗(T )low and c∗(T )low will follow

Debye dependencies, and the values 20 and γ0 will match

the values of 20s and γ0s , due to the disappearance of

corrections to Debye dependencies in Eqs. (14) and (15).
This is obvious in the case of χn = 0. And in the case of

χn > 0 and k > n + 1, the second terms in (14) and (15)
at T/20, close to zero, will be much smaller than the first

terms, and therefore they can not take into account both 20

values and γ0 values in calculations.
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Debye temperature values, which are determined from the heat

capacity and the elastic properties of the crystal [16], and the χ3
values calculated from them using Eq. (25)

Crystal 20s , K 2el
0 , K χ3

C-diam 2220 2252 0.7597

Si 645 655 0.8180

Ge 374 379 0.7039

3C-SiC 1080 1108 1.3821

c-BN 1850 1900 1.4424

AlN 825 903 5.3907

AlP 588 553 −2.9119

AlAs 417 411 −0.7368

ZnO 399.5 418.8 2.6330

ZnS 340 349 1.4119

The following method can be proposed to estimate the

χn value. It is known that the Debye temperature can

also be determined by the elastic modulus of a crystal

(BT = −V (∂P/∂V )T) [4,16–22]. However, the 2el
0 value

determined from the elastic modulus 2el
0 differs from the

value of the Debye temperature, which is determined from

the temperature dependence of the isochoric heat capacity

(20s), i.e. from Eq. (11). Since the calculation of the elastic

modulus of a crystal does not use derivatives of free energy

with respect to temperature, it can be assumed that the 2el
0

value coincides with the 20 value, or is very close to it.

Then the χn value can be estimated from the expression

that follows from (22):

χn =
2(n + 1)An

n

[(

2el
0

20s

)n

− 1

]

. (24)

For a three-dimensional crystal, (24) is transformed to the

form

χ3 =
8π4

45

[(

2el
0

20s

)3

− 1

]

= 17.317

[(

2el
0

20s

)3

− 1

]

. (25)

The table shows the χ3 values, which are calculated

using (25) for some crystals. The Debye temperatures,

which are determined from the heat capacity (20s) and the

elastic properties (2el
0 ) of the crystal at T = 0K, are taken

from Ref. [16, Table 4].
The table shows that in most cases the function 2(T )low

decreases with increasing temperature from 2el
0 . It should

be noted that the values 20s and 2el
0 , as indicated in

Ref. [16], have a certain range of variance, which is quite

different from different authors. Therefore, the estimates

of χ3 from the table are also approximate. However,

estimates of the 2(T )low function carried out by other,

more complex methods in Res. [1,2,4–11] also indicate that

the 2(T )low function decreases with increasing temperature

for most of the studied substances. We also note that

in Ref. [15] we proposed another method for estimating

the χn value of single-component crystals based on the

parameters of the paired interatomic potential. However, the

method from (25), despite its simplicity, is also applicable

to multicomponent crystals.

2. Discussion of the results

Unfortunately, not all dependencies obtained for the

function 2(T )low satisfy the above conditions: incorrect

dependencies have been obtained in many studies. For

example, a quadratic dependence was obtained for three-

dimensional crystals in Res. [8,16]: 2(T )low ∝ T 2, and a

linear increase in the function 2(T )low with growth of T

was obtained in Ref. [23]. The quadratic dependence for

2(T )low leads to a linear dependence of entropy and heat

capacity on temperature in (8) and (9), and the linear

dependence for 2(T )low leads to a violation of the third

law of thermodynamics (12) for entropy.

A formula with six fitting constants was proposed for

the function 2(T ) in Ref. [11]:
”
calorimetric Debye

temperature“, which has the form [11, Eq. (12)]:

2cal(T ) = a1 exp(−b1T ) + a2[1− exp(−b2T 2)] + c.

However, substituting this dependence into Eq. (8) leads

to a violation of the third law of thermodynamics (12) due

to the following relations:

(

∂2cal

∂T

)

V

=−a1b1 exp(−b1T )+a2b2z T z−1 exp(−b1T 2),

lim
T→0 K

(

∂2cal

∂T

)

V

= −a1b1 6= 0.

Recently, the Debye model has also been used to study

the heat capacity of two-(2D) [24,25] and one-dimensional

(1D) structures [26]. At the same time, a linear decrease

in the function 2(T )low was obtained in Ref. [24] for the

2D-layer of Ne with increasing temperature. A linear

growth of the function 2(T )low with temperature increase

was obtained in Ref. [25] for 2D-graphene. However, for

fulfillment of the third principle of thermodynamics in the

form of (12), the change in the function 2(T )low for 2D-

structures should be proportional to the dependence of

(T/20)
3, and for 1D-structures it should be proportional to

(T/20)
2. Using an incorrect dependence for the 2(T )low

function can lead to incorrect temperature dependences

of other crystal properties that are associated with this

function.

In order to get rid of the problem of correctly accounting

for the temperature dependence of the Debye temperature

in theoretical models, we can follow a simple path,

assuming (as Einstein and Debye did) that the function 2

depends only on density and does not change with an

isochoric increase in temperature. This was done in
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Res. [20–22,27,28], where the 2 value was calculated either

from the elastic properties of the crystal [20–22], or from

the parameters of the paired interatomic potential [27,28].
This method allowed both observing the third principle

of thermodynamics and obtaining good agreement with

experimental data.

Conclusion

If, at low temperatures, the Debye temperature for a

n-dimensional crystal changes with temperature, then the

2(T ) values should be determined from the experimental

dependence of c∗(T )low by solving the differential equa-

tion (7) or (9), and not from the power equation (11). In

this case, the Grüneisen thermodynamic parameter should

differ from the Grüneisen vibration parameter: γTh 6= γ .

For fulfillment of the third principle of thermodynamics,

the function 2(T ) at low temperatures must change accord-

ing to the dependence

2(T )low = 20[1− χn(T/20)
n+1].

In this case, the Grüneisen parameter should vary de-

pending on (19). To find the values of 20 and χn, it is

also possible to use a power equation that follows from

Eqs. (15) and (18):

c∗(T )low
∼= cD(T )∗low +

n2

2
χn

(

T

20

)n

= n

[

(n + 1)An +
n

2
χn

](

T

20

)n

.

It is shown that at χn > 0, the function 2(T )low de-

creases, and the function γ(T )low increases with increasing

temperature from 20 > 20s and γ0 > γ0s , respectively. In

the average temperature range, the function 2(T ) should

have a minimum, and the function γ(T ) should have a

maximum. At χn < 0, the picture changes to the opposite:

the function 2(T )low increases with increasing temperature

from 20 < 20s to maximum, and the function γ(T )low

decreases from γ0 < γ0s to minimum.

For any χn 6= 0, the 20 value differs from the 20s value,

which is determined from the experimental values of the

heat capacity without taking into account the dependence

2(T )low . In the case of χn > 0 and k > n + 1, or for

χn = 0, the functions s∗(T )low and c∗(T )low will follow

Debye dependencies, and the values of 20 and γ0 will

match the values of 20s and γ0s due to the disappearance

of corrections to Debye dependencies.

Acknowledgments

The author wishes to thank S.P. Kramynin, K.N. Magome-

dov, N.S. Gazanova, Z.M. Surkhaeva, and M.M. Gadzhieva

for help in work.

Funding

The research was supported by a grant from

the Russian Science Foundation �25-23-00001,

https://rscf.ru/project/25-23-00001/

Conflict of interest

The author declares that he has no conflict of interest.

References

[1] G. Leibfried. Gittertheorie der Mechanischen und Thermis-

chen Eigenschaften der Kristalle (Springer-Verlag, Berlin,

1955)
[2] A.A. Maradudin, E.W. Montroll, G.H. Weiss. Theory of Lat-

tice Dynamics in the Harmonic Approximation (Academic

Press, London 1963)
[3] M. Abramowitz, I. Stegun (eds.) Handbook of Mathemat-

ical Functions (National Bureau of Standards, NY., 1964)
https://www.math.hkbu.edu.hk/support/aands/intro.htm

[4] T.H.K. Barron, J.G. Collins, G.K. White. Adv. Phys., 29 (4),
609 (1980). DOI: 10.1080/00018738000101426

[5] J. Rosén, G. Grimvall. Phys. Rev. B, 27 (12), 7199 (1983).
DOI: 10.1103/PhysRevB.27.7199

[6] T. Tohei, A. Kuwabara, F. Oba, I. Tanaka. Phys. Rev. B, 73 (6),
064304 (2006). DOI: 10.1103/PhysRevB.73.064304

[7] S. Ahmed, M. Zafar, M. Shakil, M.A. Choudhary. Chinese

Phys., B 25 (3), 036501 (2016).
DOI: 10.1088/1674-1056/25/3/036501
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