Influence of the near-surface plasma area on a supersonic flow past a semi-cylinder in different gases
Lapushkina T. A. 1,2, Azarova O. A. 2, Reshetova E. V. 2, Belov K. I. 1
1Ioffe Institute, St. Petersburg, Russia
2Dorodnitsyn Computing Center, Federal Research Center “Computer Science and Control”, Russian Academy of Sciences, Moscow, Russia
Email: tlapushkina@gmail.com, olgazarov@gmail.com

PDF
The main objective of this study is to demonstrate the feasibility of actively influencing the position of the bow shock wave in a supersonic flow, as well as the parameters of an aerodynamic body, using a gas discharge generated near the frontal surface between the body and the bow shock wave. The dependence of the steady bow shock wave stand-off distance on the discharge power and current in xenon and air was studied experimentally and numerically. A comparison of the numerical and experimental data showed good agreement. It was found that the position of the steady bow shock wave is determined by the specific discharge power and the adiabatic index (affected by the degree of ionization and the degree of nonequilibrium) in the plasma zone created by the discharge. It was found that, at the initial stage, the dependence of the relative stand-off on the discharge power is close to linear, while the adiabatic index is close to constant. As the discharge current and power increase, the adiabatic index tends to increase in xenon and decrease in air. At the same time, an oscillatory dependence of the position of the steady bow shock wave on the discharge power was observed in xenon. This oscillation is associated with the possibility of the adiabatic index either increasing or decreasing depending on the correlation of plasma characteristics. Thus, it was shown that the adiabatic index of a gas-discharge plasma plays a significant role in the dynamics of the flow structure and the magnitude of the stand-off position of the steady bow shock wave from the body. The obtained results can be used in developing high-speed flow control systems, taking into account not only thermal effects but also the influence of plasma parameters. Keywords: flow control, xenon, air, gas discharge, adiabatic index, bow shock wave, supersonic flow.
  1. D. Knight. J. Propulsion Power, 24, 1153 (2008). DOI: 10.2514/1.24595
  2. M.Y.M. Ahmed, N. Qin. Progress Aerospace Sci., 112, 100585 (2020). DOI: 10.1016/j.paerosci.2019.100585
  3. S. Rashid, F. Nawaz, A. Maqsood, S. Salamat, R. Riaz. Proc. Institution of Mechanical Engineers, Part G: J. Aerospace Engineering, 12, 2851 (2022). DOI: 10.1177/09544100211069796
  4. O.A. Azarova, O.V. Kravchenko. Energies, 17 (7), 1632 (2024). DOI: 10.3390/en17071632
  5. S.B. Leonov, I.V. Adamovich, V.R. Soloviev. Plasma Sources Sci. Technol., 25, 063001 (2016). DOI: 10.1088/0963-0252/25/6/063001
  6. P. Yu. Georgievskij, V.A. Levin. Pis'ma v ZhTF, 14 (8), 684 (1988) (in Russian)
  7. V.I. Artemyev, V.I. Bergelson, I.V. Nemchinov et al. Izvestiya AN SSSR. MZhG, 5, 146 (1989) (in Russian)
  8. P.K. Tretyakov, V.M. Fomin, V.I. Yakovlev. Proc. Int. Conf. Methods of Aerophysical Research (Novosibirsk, Russia, 1996), p. 210
  9. V.A. Bityurin, A.I. Klimov, S.B. Leonov, et al. In: Proc. 3rd Weakly Ionized Gases Workshop (Norfolk, AIAA, 1999), p. 4940. DOI: 10.2514/6.1999-4940
  10. V.P. Fomichev, M.A. Yadrenkin. Pisma v ZhTF, 43 (23), 31 (2017) (in Russian). DOI: 10.21883/PJTF.2017.23.45273.16648
  11. H. Yan, F. Liu, J. Xu, Y. Xue. AIAA J., 56, 532 (2017). DOI: 10.2514/1.J056107
  12. B. Tang, S. Guo, L. Hua. Contributions to Plasma Phys., 61 (2), e202000067 (2020). DOI: 10.1002/ctpp.202000067
  13. O.A. Azarova, A.V. Erofeev, T.A. Lapushkina. Pisma v ZhTF, 43 (8), 93 (2017). (in Russian) DOI: 10.21883/PJTF.2017.08.44540.16598
  14. K.T.A.L. Burm, W.J. Goedheer, D.C. Schram. Phys. Plasmas, 6, 2622 (1999). DOI: 10.1063/1.873535
  15. V. Lago, R. Joussot, J. Parisse. J. Physics D: Appl. Phys., 47, 125202 (2014). DOI: 10.1088/0022-3727/47/12/125202
  16. O.A. Azarova, T.A. Lapushkina, Y.A. Shustrov. Phys. Fluids, 34, 066117 (2022). DOI: 10.1063/5.0093787
  17. O.A. Azarova, T.A. Lapushkina, O.V. Kravchenko. Fluids, 9 (12), 277 (2024). DOI: 10.3390/fluids9120277
  18. Yu.P. Raiser. Fizika gazovogo razryada (Nauka, M., 1987) (in Russian)
  19. P. Rouch. Vychislitel'naya gidrodinamika (Mir, M., 1980) (in Russian)
  20. O.A. Azarova. ZhVM i MF, 55 (12), 2067 (2015) (in Russian). DOI: 10.7868/S0044466915120030

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru