Charge accumulation and relaxation in active mode of Al/Si3N4/SiO2/n-Si device structures
Gorbachuk N.I. 1, Ermakova K.A.1, Poklonski N.A. 1, Shpakovski S.V.2
1Belarusian State University, Minsk, Republic of Belarus
2JSC “INTEGRAL” – Holding Management Company “INTEGRAL”, Minsk, Belarus
Email: gorbachuk@bsu.by, ermakova.7003@gmail.com, poklonski@bsu.by, sshpakovskiy@integral.by

PDF
Two MIS structures (Al/Si3N4/n-Si and Al/Si3N4/SiO2/n-Si) formed on n-type crystalline silicon substrates grown by the Czochralski method are studied. The substrate has crystallographic orientation (100) with a resistivity of 4.5 Ω·cm. The layer of silicon nitride (Si3N4) is formed by low-pressure chemical vapor deposition (LPCVD) using a gas mixture of ammonia and monosilane. The layer of silicon dioxide (SiO2) is formed by thermal oxidation of silicon in dry oxygen. The thickness of Si3N4 is 70 nm and the thickness of SiO2 is 5 nm. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics are measured, and the thermally stimulated relaxation of the charge accumulated in Si3N4 is studied. It is established that Al/Si3N4/n-Si structures under applied DC voltage can accumulate both positive and negative charges, while Al/Si3N4/SiO2/n-Si structures can accumulate only negative charges. The accumulation of specific charge types corresponds to the dominance of monopolar injection during charge transfer in the structures. The capture of charge carriers (both electrons and holes) in traps within silicon nitride is responsible for switching processes from high electrical conductivity state to low conductivity state. During positive charge relaxation in Al/Si3N4/n-Si structures, two kinetics are observed, which is associated with the dominance of two types of traps involved in hole capture and charge transfer through the silicon nitride layer. It is shown that the presence of a silicon oxide layer enhances the thermal stability of charge stored in Si3N4 by introducing an additional energy barrier for electrons in Al/Si3N4/SiO2/n-Si structures. It is established that within the 300-500 K temperature range, the flat-band voltage shift Δ Ufb induced by charge relaxation in Si3N4 layer does not exceed 20 %. The results of this work can be used in the design of non-volatile memory cells. Keywords: nonvolatile memory, MIS structures, MNOS structures, electric charge, C-V characteristics.
  1. S.M. Sze, M.K. Lee. Semiconductor Devices: Physics and Technology (Wiley, NY., 2012)
  2. K.K. Ng. Complete Guide to Semiconductor Devices (Wiley, NY., 2002), DOI: 10.1002/9781118014769
  3. A.K. Sharma. Semiconductor Memories: Technology, Testing, and Reliability (Wiley, Hoboken, 1997)
  4. W.D. Brown, J.E. Brewer (editors). Nonvolatile Semiconductor Memory Technology: A Comprehensive Guide to Understanding and Using NVSM Devices (IEEE Press, NY., 1998)
  5. J.E. Brewer, M. Gill (editors). Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using NVM Devices (Wiley, Hoboken, 2008)
  6. M.A. Khaliq, Q.A. Shams, W.D. Brown, H.A. Naseem. Solid-State Electron., 31 (8), 1229 (1988). DOI: 10.1016/0038-1101(88)90419-4
  7. K. Ramkumar, V. Prabhakar, A. Keshavarzi, I. Kouznetsov, S. Geha. MRS Adv., 2 (4), 209 (2017). DOI: 10.1557/adv.2017.144
  8. M.H. White, Y. Yang, A. Purwar, M.L. French. IEEE Transactions on Components, Packaging and Manufacturing Technology: Part A, 20 (2), 190 (1997). DOI: 10.1109/95.588573
  9. M.L. French, C.-Y. Chen, H. Sathianathan, M.H. White. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 17 (3), 390 (1994). DOI: 10.1109/95.311748
  10. D. Adams, P. Farrell, M. Jacunski, D. Williams, J. Jakubczak, M. Knoll, J. Murray. Proc. of Fifth Biennial Nonvolatile Memory Technology Review, (IEEE, 1993), p. 96-99. DOI: 10.1109/NVMT.1993.696961
  11. P. Gentil. In: Instabilities in Silicon Devices. Vol. 3: New Insulators, Devices and Radiation Effects, ed. by B. Gerard, A. Vapaille (North-Holland, Amsterdam, 1999), ch. 5, p. 341-404
  12. K.A. Nasyrov, V.A. Gritsenko. Phys.-Uspekhi, 56 (9), 999 (2013). DOI: 10.3367/UFNe.0183.201310h.1099
  13. V.A. Gritsenko. Phys.-Uspekhi, 51 (7), 699 (2008). DOI: 10.1070/PU2008v051n07ABEH006592
  14. V.A. Gritsenko. Phys.-Uspekhi, 55 (5), 498 (2012). DOI: 10.3367/UFNe.0182.201205d.0531
  15. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams. Nature, 453 (7191), 80 (2008). DOI: 10.1038/nature06932
  16. Y.-H. Liu, T.-C. Zhan, T. Wang, W.-J. Tsai, T.-C. Lu, K.-C. Chen, C.-Y. Lu. IEEE Trans. Electron Devices, 66 (12), 5155 (2019). DOI: 10.1109/ted.2019.2949251
  17. A.A. Gismatulin, V.A. Gritsenko, T.-J. Yen, A. Chin. Appl. Phys. Lett., 115 (25), 253502 (2019). DOI: 10.1063/1.5127039
  18. T.J. Yen, A. Chin, V. Gritsenko. Sci. Rep., 10, 2807 (2020). DOI: 10.1038/s41598-020-59838-y
  19. K.A. Nasyrov, V.A. Gritsenko. J. Appl. Phys., 109 (9), 093705 (2011). DOI: 10.1063/1.3587452
  20. E. Barsoukov, J.R. Macdonald (editors). Impedance Spectroscopy: Theory Experiment, and Applications (Wiley, Hoboken, 2018), DOI: 10.1002/9781119381860
  21. E.H. Nicollian, A. Goetzberger. Bell Syst. Tech. J., 46 (6), 1055 (1967). DOI: 10.1002/j.1538-7305.1967.tb01727.x
  22. A.A. Gismatulin, G.N. Kamaev, V.N. Kruchinin, V.A. Gritsenko, O.M. Orlov, A. Chin. Sci. Rep., 11, 2417 (2021). DOI: 10.1038/s41598-021-82159-7
  23. H. Xu, Z. Li, Z. Zhang, S. Liu, S. Shen, Y. Guo. Nanomaterials, 13 (8), 1352 (2023). DOI: 10.3390/nano13081352
  24. D. Mizginov, O. Telminov, S. Yanovich, D. Zhevnenko, F. Meshchaninov, E. Gornev. Crystals, 13 (2), 323 (2023). DOI: 10.3390/cryst13020323
  25. F.F. Komarov, I.A. Romanov, L.A. Vlasukova, I.N. Parkhomenko, A.A. Tsivako, N.S. Kovalchuk. Dokl. NAS Belarus, 64 (4), 403 (2020) (in Russian). DOI: 10.29235/1561-8323-2020-64-4-403-410
  26. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel. J. Appl. Phys., 90 (5), 2057 (2001). DOI: 10.1063/1.1385803
  27. P.A. Forsh, S.Yu. Stremoukhov, A.S. Frolova, K.Yu. Khabarova, N.N. Kolachevsky. Phys.-Uspekhi, 67 (9), 855 (2024). DOI: 10.3367/UFNe.2024.06.039698
  28. V.B. Bondarenko, S.N. Davydov, A.V. Filimonov. Semiconductors, 44 (1), 41 (2010). DOI: 10.1134/S1063782610010069
  29. N.I. Gorbachuk, N.A. Poklonski, E.A. Ermakova, S.V. Shpakovski. Sb. st. II Mezhdunar. nauch.-tekhn. konf. "Opto-, mikro- i SVCH-elektronika --- 2022" (Belaruskaya navuka, Minsk, 2022), p. 4-11 (in Russian)
  30. N.I. Gorbachuk, N.A. Poklonski, E.A. Ermakova, S.V. Shpakovski. Tez. dokl. XIV Mezhdunar. konf. "KREMNIJ-2022", (Pero, M., 2022), p. 135 (in Russian). DOI: 10.34077/SILICON2022-135

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru