Strength properties, mechanisms of high-speed plastic deformation and failure of Ti-6Al-3Mo alloy in shock waves
A. V. Pavlenko1, A. V. Dobromyslov2, N. I. Taluts2, S. N. Malyugina1, S. S. Mokrushin1, M. S. Mytarev1, M. A. Borshchevskyi1
1Federal State Unitary Enterprise «Russian Federal Nuclear Center - Zababakhin All-Russia Research Institute of Technical Physics», Snezhinsk, Chelyabinsk region, Russia
2M.N. Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
Email: dep5@vniitf.ru

PDF
The results of measuring the shock compression wave profiles of samples (α + β) of titanium alloy Ti-6Al-3Mo under different shock wave loading conditions are presented, as well as the results of metallographic examination of samples preserved after loading. The dependences of the deflection strength on the rate of deformation in the rarefaction wave and the Hugoniot elastic limit on the propagation time of the compression wave in the material are obtained. The values of Hugoniot's deflection strength and elastic limit were determined in the temperature range from -168 oC to 400 oC. The results of metallographic studies of the preserved samples showed that under the realized loading conditions, high-speed plastic deformation is carried out by sliding, and the formation of twins does not occur. A characteristic feature of the high-speed plastic deformation of the alloy under study was the formation of bands of strain localization, and mechanical failure occurred through the formation of deflection and shear cracks. Keywords: (α + β)-titanium alloy, shock wave effect, deflection strength, Hugoniot elastic limit, deformation rate, high-speed plastic deformation, structure.
  1. S.V. Razorenov, A.V. Utkin, G.I. Kanel, V.E. Fortov, A.S. Yarunichev, K. Baumund, H.U. Karow. High Press. Res., 13, 367 (1995). DOI: 10.1080/08957959508202588
  2. C.W. Greeff, D.R. Trinkle, R.C. Albers. J. Appl. Phys., 90, 2221 (2001). DOI: 10.1063/1.1389334
  3. A.I. Petrov, M.V. Razuvaeva. Tech. Phys., 48 (6), 714 (2003)
  4. G.I. Kanel, S.V. Razorenov, E.B. Zaretsky, B. Herrman, L. Mayer. FTT, 45 (4), 625 (2003) (in Russian)
  5. A. Dobromyslov, N. Taluts., E. Kozlov. High Press. Res., 33, 124 (2013). DOI: 10.1080/08957959.2012.758721
  6. V.A. Borisenok, M.V. Zhernokletov, A.E. Kovalev, A.M. Podurets, V.G. Simakov, M.I. Tkachenko. Combustion, Explosion and Shock Waves, 50 (3), 346 (2014). DOI: 10.1134/S0010508214030137
  7. G.I. Kanel, S.V. Razorenov, G.V. Garkushin. J. Appl. Phys., 119, 185903 (2016). DOI: 10.1063/1.4949275
  8. G.I. Kanel, S.V. Razorenov, G.V. Garkushin, A.V. Pavlenko, S.N. Malyugina. FTT, 58 (6), 1153 (2016) (in Russian)
  9. G.I. Kanel, G.V. Garkushin, A.S. Savinykh, S.V. Razorenov, J. Experimental Theor. Phys., 127 (2), 337 (2018). DOI: 10.1134/S1063776118080022
  10. A.V. Pavlenko, A.V. Dobromyslov, N.I. Taluts, S.N. Malyugina, S.S. Mokrushin. Phys. Metals Metallography, 122 (8), 794 (2021). DOI: 10.1134/S0031918X2108010X
  11. A.V. Pavlenko, A.V. Dobromyslov, N.I. Taluts, S.N. Malyugina, S.S. Mokrushin. Mater. Today Commun., 31, 103245 (2022)
  12. Yu.I. Mescheryakov, A.K. Divakov, N.I. Zhigacheva. Int. J. Shock Waves., 10, 43 (2000)
  13. G.I. Kanel, G.V. Garkushin, S.V. Razorenov. ZhTF, 86 (8), 111 (2016) (in Russian) (in Russian)
  14. Y. Ren, J. Lin. Metals Mater. Intern., 27, 4357 (2021). DOI: 10.1007/s1254 0-020-00721 -w
  15. P.S. Follansbee, G.T. Gray. Met. Trans. A, 20A, 863 (1989)
  16. A.V. Pavlenko, S.I. Balabin, O.E. Kozelkov, D.N. Kazakov. Instruments and Experimental Techniques, 56 (4), 482 (2013). DOI: 10.1134/S0020441213040088
  17. A.V. Pavlenko, S.N. Malyugina, V.V. Pereshitov, I.N. Lisitsina. PTE, 2, 127 (2013) (in Russian). DOI: 10.7868/S0032816213020122
  18. S.S. Mokrushin, N.B. Anikin, S.N. Malyugina, A.V. Pavlenko, A.A. Tyaktev. Instruments and Experimental Techniques, 57 (4), 475 (2014). DOI: 10.1134/S0020441214030075
  19. G.I. Kanel. PMTF, 42 (2), 194 (2001) (in Russian)
  20. Yu.V. Milman, I.V. Goncharova. Usp. Fiz. Met.-Prog. Phys. Met., 18, 265 (2017). (in Russian).
  21. S.V. Zherebtsov, G.S. Dyakonov, G.A. Salishchev, A.A. Salem, S.L. Semiatin, Metall. Mater. Trans. A, 47, 5101 (2016)
  22. U. Zwicker. Titan und Titanlegirungen (Springer-Verlag, Berlin, Heidelberg, NY., 1974)
  23. B.A. Kolachev. Fizicheskoe materialovedenie titana (Metallurgiya, M., 1976) (in Russian)
  24. R.W.K. Honeycombe. The plastic deformation of metals (Edward Arnold, London, 1968)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru