Defect structure, optical and photorefractive properties of LiNbO3 : B : Gd single crystals
Biryukova I. V. 1, Titov R. A. 1, Efremov I. N. 1, Efremov V. V. 1,2, Bobreva L. A. 1, Teplyakova N. A. 1, Palatnikova O. V.1, Sidorov N. V. 1, Palatnikov M. N. 1
1Tananaev Institute of Chemistry - Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences», Apatity, Murmansk region, Russia
2Institute of North Industrial Ecology Problems – Subdivision of the Federal Research Center «Kola Science Center of the Russian Academy of Sciences», Apatity, Murmansk region, Russia
Email: i.biriukova@ksc.ru, r.titov@ksc.ru, i.efremov@ksc.ru, v.efremov@ksc.ru, l.bobreva@ksc.ru, n.tepliakova@ksc.ru, o.palatnikova@ksc.ru, n.sidorov@ksc.ru, m.palatnikov@ksc.ru

PDF
Technological approaches to obtaining nonlinear optical single-crystals of double doping LiNbO3 : B : Gd have been investigated. It is shown that simultaneous doping with boron and gadolinium allows for targeted impact on the defect structure and practical properties of lithium niobate crystals. The solid-phase synthesis-granulation method helped to obtain the initial monophase charge of lithium niobate with a concentration of B2O3 of 0.03 mol.% and Gd2O3 of 0.62 mol.% corresponding to the composition of congruent melting. It has been found that the concentration of boron in the melt after growing LiNbO3 : B : Gd crystals decreases by 3 times compared to its concentration in the initial charge. Two single crystals LiNbO_3:(0.58· 10-3 B2O3) : (0.51 mol.% Gd2O3) and LiNbO_3:(0.32· 10-3 B2O3) : (0.53 mol.% Gd2O3) were grown from a melt by the Czochralski method. Single crystals are similar in composition, and they are characterized by a low photorefractive effect, high compositional and optical uniformity. Both LiNbO3 : B : Gd crystals are characterized by high Curie temperatures (1210 oC and 1213 oC). Using the method of IR absorption spectroscopy in the region of stretching vibrations of OH groups, it was shown that the increase in the concentration of hydroxyl groups in LiNbO3 : B : Gd crystals is due to physicochemical and technological factors. Using laser conoscopy, it has been shown that the LiNbO_3:(0.32· 10-3 B2O3) : (0.53 mol.% Gd2O3) crystal has higher optical uniformity compared to the LiNbO_3:(0.58· 10-3 B2O3) : (0.51 mol.% Gd2O3) crystal. Keywords: Lithium niobate, gadolinium, boron, double doping, laser conoscopy, photoinduced light scattering, IR absorption spectroscopy, optical microscopy.
  1. C. Guanyu, L. Nanxi, D.N. Jun, L. Hong-Lin, Z. Yanyan, H.F. Yuan, Y.T.L. Lennon, Y. Yu, L. Ai-Qun, J.D. Aaron. Adv. Photonics, 4 (3), 034003 (2022). DOI: 10.1117/1.AP.4.3.034003
  2. R.S. Weis, T.K. Gaylord. Appl. Phys. A, 37, 191 (1985). DOI: 10.1007/BF00614817
  3. Y. Guo, L. Liu, D. Liu, S. Deng, Y. Zhi. Appl. Opt., 44 (33), 7106 (2005). DOI: 10.1364/ao.44.007106
  4. N.V. Sidorov, T.R. Volk, B.N. Mavrin, V.T. Kalinnikov. Niobat litiya: defekty, fotorefraktsiya, kolebatelny spektr, polyaritony (Nauka, M., 2003) (in Russian)
  5. Y. Wang, R. Wang, J. Yuan, Y. Wang. J. Lumin., 147, 242 (2014). DOI: 10.1016/j.jlumin.2013.11.032
  6. M. Carrascosa, A. Garci a-Cabanes, M. Jubera, J.B. Ramiro, F. Agullo-Lopez. Appl. Phys. Rev., 2 (4), 040605 (2015). DOI: 10.1063/1.4929374
  7. K.M. Mambetova, S.M. Shandarov, A.I. Tatyannikov, S.V. Smirnov. Russ. Phys. J., 62 (4), 658 (2019). DOI: 10.1007/s11182-019-01760-6
  8. K. Chen, Y. Zhu, Z. Liu, D. Xue. Molecules, 26 (22), 7044 (2021). DOI: 10.3390/molecules26227044
  9. H.M. O'Bryan, P.K. Gallagher, C.D. Brandle. J. Am. Ceram. Soc., 68 (9), 493 (1985). DOI: 10.1111/J.1151-2916.1985.TB15816.X
  10. Yu.S. Kuz'minov. Elektroopticheskii i nelineinoopticheskii kristall niobata litiya (Nauka, M., 1987) (in Russian)
  11. D. Xue, K. Kitamura, J. Wang. Opt. Mater., 23, 399 (2003). DOI: 10.1016/S0925-3467(02)00326-9
  12. H.D. Megaw. Acta Cryst., 7 (2), 187 (1954). DOI: 10.1107/s0365110x54000527
  13. M.N. Palatnikov, N.V. Sidorov, O.V. Makarova, D.V. Manukovskaya, L.A. Aleshina, A.V. Kadetova. J. Am. Ceram. Soc., 100 (8), 3703 (2017). DOI: 10.1111/jace.14851
  14. T. Volk, M. Wohlecke. Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)
  15. A. Kling, J.G. Marques. Crystals., 11 (5), 501 (2021). DOI: 10.3390/cryst11050501
  16. M.N. Palatnikov, N.V. Sidorov, A.Yu. Pyatyshev, P.P. Sverbil, N.A. Teplyakova, O.V. Makarova. Opt. Mater., 135, 113241 (2023). DOI: 10.1016/j.optmat.2022.113241
  17. O. Sanchez-Dena, S.D. Villalobos-Mendoza, R. Farias, C.D. Fierro-Ruiz. Crystals., 10 (11), 990 (2020). DOI: 10.3390/cryst10110990
  18. C. Cochard, M. Guennou, T. Spielmann, N.V. Hoof, A. Halpin, T.J. Granzow. Appl. Phys., 123 (15), 154105 (2018). DOI: 10.1063/1.5021758
  19. Y. Kong, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, J. Xu. Adv. Mater., 32 (3), 1806452 (2019). DOI: 10.1002/adma.201806452
  20. T.S. Chernaya, T.R. Volk, I.A. Verin, V.I. Simonov. Crystallogr. Rep., 53 (4), 573 (2008). DOI: 10.1134/S106377450804007X
  21. T.S. Chernaya, B.A. Maksimov, T.R. Volk, N.M. Rubinina, V.I. Simonov. JETPL, 73 (2), 103 (2001). DOI: 10.1134/1.1358430
  22. M.N. Palatnikov, O.V. Makarova, N.V. Sidorov. Rostovye i tekhnologicheskie defekty kristallov niobata litiya razlichnogo khimicheskogo sostava: atlas, Izd-vo FITs KNTs RAN, Apatity, 2018 (in Russian)
  23. M.N. Palatnikov, I.V. Biryukova, N.V. Sidorov, A.V. Denisov, V.T. Kalinnikov, P.G.R. Smith, V.Ya. Shur. J. Cryst. Growth., 291 (2), 390 (2006). DOI: 10.1016/J.JCRYSGRO.2006.03.022
  24. N.V. Sidorov, M.N. Palatnikov, N.A. Tepliakova, I.V. Biryukova, R.A. Titov, O.V. Makarova, S.M. Masloboeva. Monokristally niobata i tantalata litiya raznogo sostava i genezisa (Izd-vo RAN, M., 2022) (in Russian)
  25. M. Palatnikov, N. Sidorov, A. Kadetova. O. Makarova. Opt. Mater., 122 (A), 111755 (2021). DOI: 10.1016/j.optmat.2021.111755
  26. M.N. Palatnikov, N.V. Sidorov, V.I. Skiba, D.V. Makarov, I.V. Biryukova, Y.A. Serebryakov, O.E. Kravchenko, Y.I. Balabanov, V.T. Kalinnikov. Inorg. Mater., 36 (5), 489 (2000). DOI: 10.1007/BF02758054
  27. K. Raksanyc, A. Peter, Z. Szaller, I. Forizs, S. Erdei. Acta Phys. Hung., 61 (2), 213 (1987). DOI: 10.1007/BF03155894
  28. M. Palatnikov, O. Makarova, A. Kadetova, N. Sidorov, N. Teplyakova, I. Biryukova, O. Tokko. Materials, 16 (13), 4541 (2023). DOI: 10.3390/ma16134541
  29. X.H. Zhen, H.T. Li, Z.J. Sun, S.J. Ye, L.C. Zhao, Y.H. Xu. Mater. Lett., 58 (6), 1000 (2004). DOI: 10.1016/j.matlet.2003.08.005
  30. T. Bodziony, S.M. Kaczmarek, J. Hanuza. J. Alloys Compd., 451 (1-2), 240 (2008). DOI: 10.1016/j.jallcom.2007.04.189
  31. G. Xu, J. Zhu, B. Xiao, X. Yang, X. Wang. Cryst. Res. Technol., 31 (2), K20 (1996). DOI: 10.1002/crat.2170310226
  32. X. Yang, G. Xu, H. Li, J. Zhu, X. Wang. Cryst. Res. Technol., 31 (4), 521 (1996). DOI: 10.1002/crat.2170310418
  33. K. Kasemir, K. Betzler, B. Matzas, B. Tiegel, T. Wahlbrink, M. Wohlecke, B. Gather, N. Rubinina, T. Volk. J. Appl. Phys., 84 (9), 5191 (1998). DOI: 10.1063/1.368769
  34. S. Klauer, M. Whlecke, S. Kapphan. Phys. Rev. B., 45 (6), 2786 (1992). DOI: 10.1103/PhysRevB.45.2786
  35. N.V. Sidorov, O.Yu. Pikul', N.A. Teplyakova, M.N. Palatnikov. Lazernaya konoskopiya i fotoindutsirovannoe rasseyanie sveta v issledovaniyakh svoystv nelineyno-opticheskogo monokristalla niobata litiya (RAN, M., 2019) (in Russian)
  36. Yu.M. Tairov, V.P. Tsvetkov. Technology of semiconductor and dielectric materials (Higher School, Moscow, 1983) (in Russian)
  37. H. Can, W. Shichao, Y. Ning. J. Alloys Compd., 502 (1), 211 (2010). DOI: 10.1016/J.JALLCOM.2010.04.146
  38. K.A. Rudovi, V.I. Stroganov, L.V. Alekseeva, B.V. Nabatov, A.F. Konstantinova, E.A. Evdishchenko, B.I. Kidyarov. Crystallogr. Rep., 48 (2), 300 (2003). DOI: 10.1134/1.1564211
  39. O.Y. Pikoul. J. Appl. Crystallogr., 43 (5/1), 955 (2010). DOI: 10.1107/S0021889810022375
  40. E. Muzi, M. Cavillon, M. Lancry, F. Brisset, R. Que, D. Pugliese, D. Janner, B. Poumellec. Crystals, 11 (3), 290 (2021). DOI: 10.3390/cryst11030290
  41. C. Koyama, J. Nozawa, K. Maeda, K. Fujiwara, S. Uda. J. Appl. Phys., 117 (1), 014102 (2015). DOI: 10.1063/1.4905286
  42. C.-T. Chia, C.-C. Lee, P.-J. Chang, M.-L. Hu, L.J. Hu. Appl. Phys. Lett., 86 (18), 182901 (2005). DOI: 10.1063/1.1922083
  43. N. Lyi, K. Kitamura, F. Izumi, J.K. Yamamoto, T. Hayashi, H. Asano, S. Kimura. J. Solid State Chem., 101 (2), 340 (1992). DOI: 10.1016/0022-4596(92)90189-3
  44. P. Lerner, C. Legras, J.P. Dumas. J. Cryst. Growth., 3-4, 231 (1968). DOI: 10.1016/0022-0248(68)90139-5
  45. J.M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Muller, E. Dieguez. Adv. Phys., 45 (5), 349 (1996). DOI: 10.1080/00018739600101517
  46. K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Z. Szaller, K. Polgar. Appl. Phys. Rev., 2 (4), 040601 (2015). DOI: 10.1063/1.4929917
  47. L. Kovacs, L. Rebouta, J.C. Soarest, M.D. Silva, M. Hage-ali, J. Stoquert, P. Siffert, J.A. Sanz-Garcia, G. Corradi, Z. Szaller, K. Polgar. J. Phys.: Condens. Matter., 5, 781 (1993). DOI: 10.1088/0953-8984/5/7/006
  48. R.D. Shannon. Acta Crystallographica, A 32, 751 (1976). DOI: 10.1107/s0567739476001551
  49. L. Kovacs, Z. Szaller, K. Lengyel, G. Corradi. Opt. Mater., 37, 55 (2014). DOI: 10.1016/j.optmat.2014.04.043
  50. L. Kovacs, L. Kocsor, Z. Szaller, I. Hajdara, G. Dravecz, K. Lengyel, G. Corradi. Crystals, 7 (8), 230 (2017). DOI: 10.3390/cryst7080230

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru