Focusing of converging hypersonic frequency surface acoustic waves on NiCu/diamond structure
Klokov A. Yu.1, Frolov N. Yu.1, Sharkov A. I.1, Chentsov S. I.1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: klokov@lebedev.ru, frolil199999@gmail.com, shark@lebedev.ru, semtch@gmail.com
The propagation of converging surface acoustic waves on the surface of a natural diamond plate with the orientation (001), generated by ring optical excitation, is experimentally studied. It is shown that, despite the elastic anisotropy of diamond and the presence of dispersion, the surface wave field at the focus can be concentrated into a spot with dimensions less than ~ 4 μm, which is close to the diffraction limit. The wave magnitude at the focal point is 15 times greater than the wave magnitude in the excitation region. The results obtained create prerequisites for the implementation of ultra-high dynamic deformations at the focal point of the converging surface wave, which radically reduce the requirements for the radiation resistance of the material. Keywords: surface acoustic waves, converging surface waves, diamond, hypersound.
- Z. Ju, J. Lin, S. Shen, B. Wu, E. Wu, Adv. Phys. X, 6 (1), 1858721 (2021). DOI: 10.1080/23746149.2020.1858721
- X. Wang, H. Fang, F. Sun, H. Sun, Laser Photon. Rev., 16 (1), 2100029 (2021). DOI: 10.1002/lpor.202100029
- S.I. Kudryashov, V.G. Vins, P.A. Danilov, E.V. Kuzmin, A.V. Muratov, G.Yu. Kriulina, J. Chen, A.N. Kirichenko, Y.S. Gulina, S.A. Ostrikov, P.P. Paholchuk, M.S. Kovalev, N.B. Rodionov, A.O. Levchenko, Carbon, 201, 399 (2023). DOI: 10.1016/j.carbon.2022.09.040
- D.A. Golter, T. Oo, M. Amezcua, I. Lekavicius, K.A. Stewart, H. Wang, Phys. Rev. X, 6, 041060 (2016). DOI: 10.1103/PhysRevX.6.041060
- A.M. Gorbachev, M.A. Lobaev, D.B. Radishchev, A.L. Vikharev, S.A. Bogdanov, S.V. Bol'shedvorskii, A.I. Zeleneev, V.V. Soshenko, A.V. Akimov, M.N. Drozdov, V.A. Isaev, Tech. Phys. Lett., 46 (7), 641 (2020). DOI: 10.1134/S063785020070093
- R.A. Babunts, A.S. Gurin, A.P. Bundakova, M.V. Muzafarova, A.N. Anisimov, P.G. Baranov, Tech. Phys. Lett., 49 (1), 40 (2023). DOI: 10.21883/TPL.2023.01.55346.19391
- M.V. Shugaev, L.V. Zhigilei, J. Appl. Phys., 130, 185108 (2021). DOI: 10.1063/5.0071170
- S.A. Evlashin, V.P. Martovitskii, R.A. Khmel'nitskii, A.S. Stepanov, N.V. Suetin, P.V. Pashchenko, Tech. Phys. Lett., 38 (5), 418 (2012). DOI: 10.1134/S1063785012050057
- T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D. Hurley, O. Wright, Rev. Sci. Instrum., 77, 043713 (2006). DOI: 10.1063/1.2194518
- A.Yu. Klokov, V.S. Krivobok, A.I. Sharkov, N.Yu. Frolov, Sensors, 22, 870 (2022). DOI: 10.3390/s22030870