Light-emitting diodes based on GaInAsSb solid solutions for the spectral range of 2.5-2.8 μm
Parkhomenko Ya. A.
1, Ivanov E. V.
1, Kunitsyna E. V.
1, Pivovarova A. A.
1, Nashchekin A. V.
1, Andreev I. A.
1, Il’inskaya N. D.
1, Yakovlev Yu. P.
11Ioffe Institute, St. Petersburg, Russia
Email: Parkhomen@mail.ioffe.ru, Ed@mail.ioffe.ru, Kunits@iropt9.ioffe.ru, Pivovarova.antonina@iropto.ioffe.ru, Nashchekin@mail.ioffe.ru, Igor@iropt9.ioffe.ru, Natalya.Ilynskaya@mail.ioffe.ru, Yakovlev@iropto.ioffe.ru
For the first time LEDs emitting in the wavelength range of 2.5-2.8 μm at room temperature were created on the base of n-GaSb/n-Ga0.74In0.26As0.22Sb0.78/p-GaSb heterostructures grown by liquid-phase epitaxy using lead as a neutral solvent. The results of the study of electrical and electroluminescent characteristics for these LEDs are presented. In quasi-CW mode at the injection current of 200 mA the pulse optical power was equal to 7.4 μW. The developed LEDs are able to be used for detection of carbon dioxide and water vapor in the atmosphere. Keywords: light-emitting diodes, electroluminescence, GaSb/GaInAsSb heterostructures, liquid-phase epitaxy, lead-containing solutions-melts.
- G.G. Ishanin, E.D. Pankov, A.L. Andreev, G.V. Pol'shchikov, Istochniki i priemniki izlucheniya (Politekhnika, SPb., 1991), pp. 48--52 (in Russian)
- I.I. Novikova, A.V. Sorokina, M.A. Lobkis, N.A. Zubtsovskaya, M.V. Semenikhina, V.A. Shcheveleva, N.I. Nazimkin, Ross. Vestn. Gig., No. 4, 18 (2023) (in Russian). DOI: 10.24075/rbh.2023.081
- J.G. Growder, S.D. Smith, A. Vass, J. Keddie, in Mid-infrared Semiconductor Optoelectronics, ed. by A. Krier. Springer Ser. in Optical Sciences (Springer-Verlag, London, 2006), p. 595-597
- V.V. Romanov, I.A. Belykh, E.V. Ivanov, P.A. Alekseev, N.D. Il'inskaya, Yu.P. Yakovlev, Semiconductors, 53 (6), 822 (2019). DOI: 10.1134/S1063782619060174
- http://www.ibsg.ru
- M.M. Kugeiko, A.A. Baravik, J. Phys.: Conf. Ser., 2127, 012042 (2021). DOI: 10.1088/1742-6596/2127/1/012042
- V.M. Deichuli, T.M. Petrova, A.A. Solodov, A.M. Solodov, Atmos. Ocean. Opt., 35 (6), 634 (2022). DOI: 10.1134/S1024856022060070
- E. Ducreux, B. Grouiez, S. Robert, M. Lepere, B. Vispoel, R.R. Gamache, L. Regalia, J. Quant. Spectrosc. Radiat. Transfer, 323, 109026 (2024). DOI: 10.1016/j.jqsrt.2024.109026
- A.P. Astakhova, E.A. Grebenshchikova, E.V. Ivanov, A.N. Imenkov, E.V. Kunitsyna, Ya.A. Parkhomenko, Yu.P. Yakovlev, Semiconductors, 38 (12), 1419 (2004). DOI: 10.1134/1.1836064]
- J.C. DeWinter, M.A. Pollack, A.K. Sritastava, J.L. Zyskind, J. Electron. Mater., 14 (6), 729 (1985). DOI: 10.1007/BF02654308
- A.E. Zhukov. Osnovy fiziki i tekhnologii poluprovodnikovykh lazerov (Izd. Akad. Univ., SPb., 2016), Vol. 4, pp. 27--32 (in Russian)
- V.V. Romanov, E.V. Ivanov, A.N. Imenkov, N.M. Kolchanova, K.D. Moiseev, N.D. Stoyanov, Yu.P. Yakovlev, Tech. Phys. Lett., 27 (7), 611 (2001). DOI: 10.1134/1.1388961.