Tskhay V. S.
1, Belov M. V.1, Kozlov V. A.1, Zavertyaev M. V.1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: vtskhay@lebedev.ru, belovmv@lebedev.ru, kozlovva@lebedev.ru, zavertyaevmv@lebedev.ru
We evaluate the performance of monolithic positron emission tomography (PET) detector elements depending on its scintillator crystal plate thickness (6 and 12 mm) and the surface finish (rough or polished) using a neural network to reconstruct events. A GEANT4 PET detector model was used for this study. It consisted of a LYSO crystal with a 57.6x 57.6 mm face and a 64-channel Sensl ARRAYC-60035-64P-PCB photomultiplier. Separate runs were made with varying crystal parameters: thickness (6 and 12 mm) and surface finish (rough and polished), resulting in four separate event pools. A feed-forward neural network was used to reconstruct the point of 511 keV gamma interaction. The number of layers and neurons per layer were varied. The best resolution was achieved with a 6 mm thick detector with a rough finish with an average of 0.57± 0.01 mm for the XY plane and an average 0.89± 0.01 mm for the Z coordinate (depth of interaction), and a dR of 1.19 ± 0.01 mm. Keywords: scintillating crystals, gamma radiation, positron emission tomography, neural networks. DOI: 10.21883/0000000000
- L.P. Clemens, J. Peter, Phys. Med., 104, S98 (2022). DOI: 10.1016/S1120-1797(22)02345-6
- M. Freire, S. Echegoyen, A. Gonzalez-Montoro, F. Sanchez, A.J. Gonzalez, Med. Phys., 49 (8), 5616 (2022). DOI: 10.1002/mp.15792
- Yu.D. Zavartsev, M.V. Zavertyaev, A.I. Zagumennyi, A.F. Zerrouk, V.A. Kozlov, S.A. Kutovoi, Bull. Lebedev Phys. Inst., 40 (2), 34 (2013). DOI: 10.3103/S1068335613020024]
- G. Daniel, M.B. Yahiaoui, C. Comtat, S. Jan, O. Kochebina, J.-M. Martinez, V. Sergeyeva, V. Sharyy, C.-H. Sung, D. Yvon, Eng. Appl. Artif. Intell., 131, 107876 (2024). DOI: 10.1016/j.engappai.2024.107876