Oscillatory current behavior in a pulsed gas discharge in atmospheric-pressure helium
Kurbanismailov V.S.
1, Ragimkhanov G.B.
1, Tereshonok D.V.
2, Khalikova Z.R.
11Dagestan State University, Makhachkala, Dagestan Republic, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: Vali_60@mail.ru, gb-r@mail.ru, tereshonokd@gmail.com, zairaplazma89@mail.ru
This paper presents the results of an experimental study of a pulsed gas discharge in helium at pressures of 1-3 atm in a plane-parallel gap with a mesh cathode and preliminary ultraviolet preionization. At an electron density of about 108 cm-3, the discharge was initiated at voltages ranging from 3 to 14 kV. Analysis of current oscillograms revealed two stable regimes: aperiodic and oscillatory, differing in amplitude and pulse duration. It is shown that within a certain range of parameters - initial voltage, ballast resistance, and gas pressure - the current oscillation period, when present, remains constant. Keywords: pulsed gas discharge, helium, preionization, mesh cathode, oscillatory regime.
- M. Erofeev, V. Ripenko, M. Shulepov, V. Tarasenko, Eur. Phys. J. D, 71, 117 (2017). DOI: 10.1140/epjd/e2017-70636-6
- S.M. Starikovskaia, J. Phys. D, 47, 353001 (2014). DOI: 10.1088/0022-3727/47/35/353001
- N.A. Popov, Plasma Sources Sci. Technol., 20, 045002 (2011). DOI: 10.1088/0963-0252/20/4/045002
- N.L. Aleksandrov, S.V. Kindysheva, I.N. Kosarev, S.M. Starikovskaia, A.Yu. Starikovskii, Proc. Combust. Inst., 32, 205 (2009). DOI: 10.1016/j.proci.2008.06.124
- D.V. Tereshonok, N.Yu. Babaeva, G.V. Naidis, V.A. Panov, B.M. Smirnov, E.E. Son, Plasma Sources Sci. Technol., 27 (4), 045005 (2018). DOI: 10.1088/1361-6595/aab6d4
- Yu.D. Korolev, G.A. Mesyats, Fizika impul'snogo proboya gazov (Nauka, M., 1991) (in Russian)
- V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, D.A. Sorokin, Yu.V. Shut'ko, Tech. Phys. Lett., 36 (4), 375 (2010). DOI: 10.1134/S1063785010040255
- V.V. Osipov, Phys. Usp., 43 (3), 221 (2000). DOI: 10.1070/pu2000v043n03ABEH000602
- V.F. Tarasenko, S.I. Yakovlenko, Phys. Usp., 47 (9), 887 (2004). DOI: 10.1070/PU2004v047n09ABEH001790
- L.P. Babich, E.I. Bochkov, I.M. Kutsyk, JETP Lett., 99 (7), 386 (2014). DOI: 10.1134/S0021364014070029
- V.S. Kurbanismailov, O.A. Omarov, G.B. Ragimkhanov, D.V. Tereshonok, Tech. Phys. Lett., 43 (9), 853 (2017). DOI: 10.1134/S1063785017090206
- V.S. Kurbanismailov, O.A. Omarov, Teplofiz. Vys. Temp., 33 (3), 346 (1995) (in Russian)
- V.S. Kurbanismailov, D.V. Tereshonok, G.B. Ragimkhanov, Z.R. Khalikova, Tech. Phys. Lett., 48 (3), 41 (2022). DOI: 10.21883/TPL.2022.03.53525.19067
- N.Yu. Babaeva, G.V. Naidis, J. Phys. D, 54 (22), 223002 (2021). DOI: 10.1088/1361-6463/abe9e0
- A. Sobota, F. Manders, E.M. van Veldhuizen, J. van Dijk, M. Haverlag, IEEE Trans. Plasma Sci., 38 (9), 2289 (2010). DOI: 10.1109/TPS.2010.2056934
- V.S. Kurbanismailov, O.A. Omarov, G.B. Ragimkhanov, D.V. Tereshonok, Europhys. Lett., 123 (4), 45001 (2018). DOI: 10.1209/0295-5075/123/45001
- B.-D. Huang, Ch. Zhang, W. Zhu, X. Lu, T. Shao, High Voltage, 6 (4), 665 (2021). DOI: 10.1049/hve2.12067
- D.V. Tereshonok, N.Y. Babaeva, G.V. Naidis, A.G. Abramov, A.V. Ugryumov, IEEE Trans. Plasma Sci., 50 (3), 580 (2022). DOI: 10.1109/TPS.2022.3148545
- A. Sobota, O. Guaitella, A. Rousseau, Plasma Sources Sci. Technol., 23, 025016 (2014). DOI: 10.1088/0963-0252/23/2/025016
- T.H. Chung, IEEE Trans. Plasma Sci., 42 (12), 3656 (2014). DOI: 10.1109/TPS.2014.2364056