Oscillatory current behavior in a pulsed gas discharge in atmospheric-pressure helium
Kurbanismailov V.S. 1, Ragimkhanov G.B. 1, Tereshonok D.V. 2, Khalikova Z.R. 1
1Dagestan State University, Makhachkala, Dagestan Republic, Russia
2Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russia
Email: Vali_60@mail.ru, gb-r@mail.ru, tereshonokd@gmail.com, zairaplazma89@mail.ru

PDF
This paper presents the results of an experimental study of a pulsed gas discharge in helium at pressures of 1-3 atm in a plane-parallel gap with a mesh cathode and preliminary ultraviolet preionization. At an electron density of about 108 cm-3, the discharge was initiated at voltages ranging from 3 to 14 kV. Analysis of current oscillograms revealed two stable regimes: aperiodic and oscillatory, differing in amplitude and pulse duration. It is shown that within a certain range of parameters - initial voltage, ballast resistance, and gas pressure - the current oscillation period, when present, remains constant. Keywords: pulsed gas discharge, helium, preionization, mesh cathode, oscillatory regime.
  1. M. Erofeev, V. Ripenko, M. Shulepov, V. Tarasenko, Eur. Phys. J. D, 71, 117 (2017). DOI: 10.1140/epjd/e2017-70636-6
  2. S.M. Starikovskaia, J. Phys. D, 47, 353001 (2014). DOI: 10.1088/0022-3727/47/35/353001
  3. N.A. Popov, Plasma Sources Sci. Technol., 20, 045002 (2011). DOI: 10.1088/0963-0252/20/4/045002
  4. N.L. Aleksandrov, S.V. Kindysheva, I.N. Kosarev, S.M. Starikovskaia, A.Yu. Starikovskii, Proc. Combust. Inst., 32, 205 (2009). DOI: 10.1016/j.proci.2008.06.124
  5. D.V. Tereshonok, N.Yu. Babaeva, G.V. Naidis, V.A. Panov, B.M. Smirnov, E.E. Son, Plasma Sources Sci. Technol., 27 (4), 045005 (2018). DOI: 10.1088/1361-6595/aab6d4
  6. Yu.D. Korolev, G.A. Mesyats, Fizika impul'snogo proboya gazov (Nauka, M., 1991) (in Russian)
  7. V.F. Tarasenko, E.Kh. Baksht, A.G. Burachenko, M.I. Lomaev, D.A. Sorokin, Yu.V. Shut'ko, Tech. Phys. Lett., 36 (4), 375 (2010). DOI: 10.1134/S1063785010040255
  8. V.V. Osipov, Phys. Usp., 43 (3), 221 (2000). DOI: 10.1070/pu2000v043n03ABEH000602
  9. V.F. Tarasenko, S.I. Yakovlenko, Phys. Usp., 47 (9), 887 (2004). DOI: 10.1070/PU2004v047n09ABEH001790
  10. L.P. Babich, E.I. Bochkov, I.M. Kutsyk, JETP Lett., 99 (7), 386 (2014). DOI: 10.1134/S0021364014070029
  11. V.S. Kurbanismailov, O.A. Omarov, G.B. Ragimkhanov, D.V. Tereshonok, Tech. Phys. Lett., 43 (9), 853 (2017). DOI: 10.1134/S1063785017090206
  12. V.S. Kurbanismailov, O.A. Omarov, Teplofiz. Vys. Temp., 33 (3), 346 (1995) (in Russian)
  13. V.S. Kurbanismailov, D.V. Tereshonok, G.B. Ragimkhanov, Z.R. Khalikova, Tech. Phys. Lett., 48 (3), 41 (2022). DOI: 10.21883/TPL.2022.03.53525.19067
  14. N.Yu. Babaeva, G.V. Naidis, J. Phys. D, 54 (22), 223002 (2021). DOI: 10.1088/1361-6463/abe9e0
  15. A. Sobota, F. Manders, E.M. van Veldhuizen, J. van Dijk, M. Haverlag, IEEE Trans. Plasma Sci., 38 (9), 2289 (2010). DOI: 10.1109/TPS.2010.2056934
  16. V.S. Kurbanismailov, O.A. Omarov, G.B. Ragimkhanov, D.V. Tereshonok, Europhys. Lett., 123 (4), 45001 (2018). DOI: 10.1209/0295-5075/123/45001
  17. B.-D. Huang, Ch. Zhang, W. Zhu, X. Lu, T. Shao, High Voltage, 6 (4), 665 (2021). DOI: 10.1049/hve2.12067
  18. D.V. Tereshonok, N.Y. Babaeva, G.V. Naidis, A.G. Abramov, A.V. Ugryumov, IEEE Trans. Plasma Sci., 50 (3), 580 (2022). DOI: 10.1109/TPS.2022.3148545
  19. A. Sobota, O. Guaitella, A. Rousseau, Plasma Sources Sci. Technol., 23, 025016 (2014). DOI: 10.1088/0963-0252/23/2/025016
  20. T.H. Chung, IEEE Trans. Plasma Sci., 42 (12), 3656 (2014). DOI: 10.1109/TPS.2014.2364056
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru