Stokes and Navier-Stokes models for describing the instability of the charged boundary of a conducting liquid
Zubarev N. M. 1,2
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: nick@iep.uran.ru

PDF
We consider the developed stages of the Tonks-Frenkel instability of the free charged surface of a conducting liquid, when, due to the sharpening of the boundary, the scale of the problem is reduced to the microscopic one, and viscous effects begin to play a decisive role. In such a situation, the Stokes approximation is often used to study the flow of fluids. However, as demonstrated, a feature of the Tonks-Frenkel instability with its characteristic explosive behavior of a number of physical quantities is the incorrectness of its analysis within the framework of this approximation. A correct description of the fluid dynamics during the singularity formation requires the use of the full Navier-Stokes equations. Keywords: Tonks-Frenkel instability, Taylor cone, Navier-Stokes model, Stokes approximation.
  1. L. Tonks, Phys. Rev., 48, 562 (1935). DOI: 10.1103/PhysRev.48.562
  2. Ya.I. Frenkel', Zh. Eksp. Teor. Fiz., 6 (4), 348 (1938) (in Russian)
  3. N.M. Zubarev, O.V. Zubareva, Tech. Phys., 46 (7), 806 (2001). DOI: 10.1134/1.1387535
  4. N.M. Zubarev, JETP Lett., 73, 544 (2001). DOI: 10.1134/1.1387524
  5. V.G. Suvorov, N.M. Zubarev, J. Phys. D, 37, 289 (2004). DOI: 10.1088/0022-3727/37/2/019
  6. T.G. Albertson, S.M. Troian, Phys. Fluids, 31 (10), 102103 (2019). DOI: 10.1063/1.5123742
  7. N.M. Zubarev, Phys. Fluids, 36 (4), 042102 (2024). DOI: 10.1063/5.0200820
  8. I.V. Uimanov, D.L. Shmelev, S.A. Barengolts, Vacuum, 220, 112823 (2024). DOI: 10.1016/j.vacuum.2023.112823
  9. G.I. Taylor, Proc. Roy. Soc. Lond. A, 280 (1382), 383 (1964). DOI: 10.1098/rspa.1964.0151
  10. L.M. Baskin, A.V. Batrakov, S.A. Popov, D.I. Proskurovsky, IEEE Trans. Dielectr. Electr. Insul., 2, 231 (1995). DOI: 10.1109/94.388245
  11. G.S. Ganchenko, V.S. Shelistov, E.A. Demekhin, Colloid J., 87, 15 (2025). DOI: 10.1134/S1061933X24600970
  12. S.I. Betelu, M.A. Fontelos, U. Kindelan, O. Vantzos, Phys. Fluids, 18 (5), 051706 (2006). DOI: 10.1063/1.2204044
  13. M.A. Fontelos, U. Kindean, O. Vantzos, Phys. Fluids, 20 (9), 092110 (2008). DOI: 10.1063/1.2980030
  14. S.A. Barengolts, N.M. Zubarev, E.A. Kochurin, Tech. Phys. Lett., 50 (2), 32 (2024). DOI: 10.61011/PJTF.2024.03.57042.19731
  15. A.A. Ochirov, Yu.D. Chashechkin, Fluid Dyn., 58 (7), 1318 (2023). DOI: 10.1134/S0015462823602012
  16. L.D. Landau, E.M. Lifshitz, Course of theoretical physics (Pergamon Press, 2013), vol. 6
  17. H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, London, 1932)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru