Stokes and Navier-Stokes models for describing the instability of the charged boundary of a conducting liquid
Zubarev N. M.
1,21Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: nick@iep.uran.ru
We consider the developed stages of the Tonks-Frenkel instability of the free charged surface of a conducting liquid, when, due to the sharpening of the boundary, the scale of the problem is reduced to the microscopic one, and viscous effects begin to play a decisive role. In such a situation, the Stokes approximation is often used to study the flow of fluids. However, as demonstrated, a feature of the Tonks-Frenkel instability with its characteristic explosive behavior of a number of physical quantities is the incorrectness of its analysis within the framework of this approximation. A correct description of the fluid dynamics during the singularity formation requires the use of the full Navier-Stokes equations. Keywords: Tonks-Frenkel instability, Taylor cone, Navier-Stokes model, Stokes approximation.
- L. Tonks, Phys. Rev., 48, 562 (1935). DOI: 10.1103/PhysRev.48.562
- Ya.I. Frenkel', Zh. Eksp. Teor. Fiz., 6 (4), 348 (1938) (in Russian)
- N.M. Zubarev, O.V. Zubareva, Tech. Phys., 46 (7), 806 (2001). DOI: 10.1134/1.1387535
- N.M. Zubarev, JETP Lett., 73, 544 (2001). DOI: 10.1134/1.1387524
- V.G. Suvorov, N.M. Zubarev, J. Phys. D, 37, 289 (2004). DOI: 10.1088/0022-3727/37/2/019
- T.G. Albertson, S.M. Troian, Phys. Fluids, 31 (10), 102103 (2019). DOI: 10.1063/1.5123742
- N.M. Zubarev, Phys. Fluids, 36 (4), 042102 (2024). DOI: 10.1063/5.0200820
- I.V. Uimanov, D.L. Shmelev, S.A. Barengolts, Vacuum, 220, 112823 (2024). DOI: 10.1016/j.vacuum.2023.112823
- G.I. Taylor, Proc. Roy. Soc. Lond. A, 280 (1382), 383 (1964). DOI: 10.1098/rspa.1964.0151
- L.M. Baskin, A.V. Batrakov, S.A. Popov, D.I. Proskurovsky, IEEE Trans. Dielectr. Electr. Insul., 2, 231 (1995). DOI: 10.1109/94.388245
- G.S. Ganchenko, V.S. Shelistov, E.A. Demekhin, Colloid J., 87, 15 (2025). DOI: 10.1134/S1061933X24600970
- S.I. Betelu, M.A. Fontelos, U. Kindelan, O. Vantzos, Phys. Fluids, 18 (5), 051706 (2006). DOI: 10.1063/1.2204044
- M.A. Fontelos, U. Kindean, O. Vantzos, Phys. Fluids, 20 (9), 092110 (2008). DOI: 10.1063/1.2980030
- S.A. Barengolts, N.M. Zubarev, E.A. Kochurin, Tech. Phys. Lett., 50 (2), 32 (2024). DOI: 10.61011/PJTF.2024.03.57042.19731
- A.A. Ochirov, Yu.D. Chashechkin, Fluid Dyn., 58 (7), 1318 (2023). DOI: 10.1134/S0015462823602012
- L.D. Landau, E.M. Lifshitz, Course of theoretical physics (Pergamon Press, 2013), vol. 6
- H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, London, 1932)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.