High-energy electron beam induced changes in the atomic composition of materials in the TEM
Prikhodko K. E. 1,2, Dement'eva M. M. 1
1National Research Center “Kurchatov Institute”, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: prihodko_ke@nrcki.ru, Dementyeva_MM@nrcki.ru

PDF
The effect of high-energy electron irradiation (200 keV) in situ in a TEM (transmission electron microscope) column on samples of bismuth oxide BiO2 polycrystalline films and copper oxide CuO films, as well as on thin samples of tantalum disulfide TaS2 has been studied. It was found that the the electron beam exposure induce preferential displacements of light atoms from the crystal lattice nodes (for which the transferred energy Et exceeds the threshold displacement energy Ed) in the direction of the primary electrons motion, which causes their successive removal from the sample volume and initiates the formation of phases with a reduced content of light atoms. BiO2 samples undergo phase transformation into bismuth oxide Bi2O3, the first signs of which appear at fluence of 1.5·1023 e/cm2, and with increasing irradiation fluence up to 3.5·1023 e/cm2 this transformation spreads deep into the sample. At irradiation of CuO samples up to fluence 0.55·1023 e/cm2 copper oxide of Cu2O composition is formed, and at the fluence 3.3·1023 e/cm2 - metallic copper. Phase transformations in TaS2 occur at the 1.74·1023 e/cm2 with the TaS formation. The model of the light atoms removal process under the action of electron irradiation has been developed. Within the framework of the developed model, the threshold displacement energy (Ed) values of oxygen atoms was found to be 31.3 eV in BiO2, 21.5 eV in CuO, and for sulfur atoms 15.2 eV in TaS2. Keywords: Electron energy loss spectroscopy (EELS), high-resolution transmission electron microscopy (HRTEM), electron irradiation, electron irradiation in situ in TEM, displacement threshold energy.
  1. R.F. Egerton, P. Li, M. Malac. Micron, 35 (6), 399 (2004). DOI: 10.1016/j.micron.2004.02.003
  2. D.B. Williams, C.B. Carter. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, NY., 2009)
  3. R.F. Egerton. Ultramicroscopy, 127, 100 (2013). DOI: 10.1016/j.ultramic.2012.07.006
  4. R.F. Egerton. Microsc. Res. Tech., 75 (11), 1550 (2012). DOI: 10.1002/jemt.22099
  5. R.F. Egerton. Micron., 119, 72 (2019). DOI: 10.1016/j.micron.2019.01.005
  6. N. Jiang. Reports Prog. Phys. IOP Publishing, 79, 016501 (2016). DOI: 10.1088/0034-4885/79/1/016501
  7. M.I. Buckett, J. Strane, D.E. Luzzi, J.P. Zhang, B.W. Wessels, L.D. Marks. Ultramicroscopy, 29, 217 (1989)
  8. L.A.J. Garvie, P.R. Buseck. J. Phys. Chem. Solids, 60 (12), 1943 (1999). DOI: 10.1016/S0022-3697(99)00218-8
  9. S.R. Gilliss, J. Bentley, C.B. Carter. Appl. Surf. Sci., 241 (1-2), 61 (2005). DOI: 10.1016/j.apsusc.2004.09.018
  10. A.C. Johnston-Peck, J.S. DuChene, A.D. Roberts, D. Wei, A.A. Herzing. Ultramicroscopy, 170, 1 (2016). DOI: 10.1016/j.ultramic.2016.07.002
  11. V.I.Nikolaichuk, B.P.Sobolev, M.A.Zaporozhets, A.S.Avilov. Kristallografiya, 57 (2), 348 (2012) (in Russian)
  12. D.Sindro, T Oikava. Analiticheskaya prosvetchivayushchaya elektronnaya mikroskopiya (Mir, M., 2006) (in Russian)
  13. W.A. McKinley, H. Feshbach. Phys. Rev., 74, 1759 (1948). DOI: 10.1103/PhysRev.74.1759
  14. B.A. Gurovich, K.E. Prikhod'ko. Phys. Usp., 52, 165 (2009). DOI: 10.3367/UFNe.0179.200902d.0179
  15. B.A. Gurovich, K.E. Prikhod'ko, E.A. Kuleshova, K.I. Maslakov, D.A. Komarov. J. Exp. Theor. Phys., 116, 916 (2013). DOI: 10.1134/S1063776113050191
  16. B.A. Gurovich, D.I. Dolgii, E.A. Kuleshova, E.P. Velikhov, E.D. Ol'shanskii, A.G. Domantovskii, B.A. Aronzon, E.Z. Meilikhov. Phys. Usp., 44, 95 (2001). DOI: 10.1070/PU2001v044n01ABEH000868
  17. D.I. Dolgii, E.D. Ol'shanskii, E.P. Ryazantsev. Konversiya v mashinostroenii, 3-4, 119, (1999) (in Russian)
  18. B. Begemann, M. Jansen. J. Less-Common Met., 156 (1-2), 123 (1989). DOI: https://doi.org/10.1016/0022-5088(89)90412-8
  19. A.F. Gualtieri, S. Immovilli, M. Prudenziati. Powder Diffr., 12 (2), 90 (1997). DOI: 10.1017/S0885715600009490
  20. N.E. Brese, M. O'Keeffe, B.L. Ramakrishna, R.B. Von Dreele. J. Solid State Chem., 89 (1), 184 (1990). DOI: 10.1016/0022-4596(90)90310-T
  21. R. Restori, D. Schwarzenbach. Acta Crystallogr. B, 42, 201 (1986). DOI: 10.1107/S0108768186098336
  22. H.E. Swanson, M.C. Morris, E.H. Evans, L. Ulmer. Standard X-ray Diffraction Powder Patterns (National Bureau of Standarts, Washington DC, 1964)
  23. W. Blitz, A. Kocher. Z. Anorg. Allg. Chem., 85, 237 (1938)
  24. H. Mutka, D. Lesueur, L. Zuppiroli. Radiat. Eff., 45 (3-4), 219 (1980). DOI: 10.1080/00337578008208433
  25. D. Lesueur, J. Morillo, H. Mutkaj, A. Audouard, J.C. Jousset. Radiat. Eff., 77 (1-2), 125 (1983). DOI: 10.1080/00337578308224729

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru