High-energy electron beam induced changes in the atomic composition of materials in the TEM
Prikhodko K. E.
1,2, Dement'eva M. M.
11National Research Center “Kurchatov Institute”, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: prihodko_ke@nrcki.ru, Dementyeva_MM@nrcki.ru
The effect of high-energy electron irradiation (200 keV) in situ in a TEM (transmission electron microscope) column on samples of bismuth oxide BiO2 polycrystalline films and copper oxide CuO films, as well as on thin samples of tantalum disulfide TaS2 has been studied. It was found that the the electron beam exposure induce preferential displacements of light atoms from the crystal lattice nodes (for which the transferred energy Et exceeds the threshold displacement energy Ed) in the direction of the primary electrons motion, which causes their successive removal from the sample volume and initiates the formation of phases with a reduced content of light atoms. BiO2 samples undergo phase transformation into bismuth oxide Bi2O3, the first signs of which appear at fluence of 1.5·1023 e/cm2, and with increasing irradiation fluence up to 3.5·1023 e/cm2 this transformation spreads deep into the sample. At irradiation of CuO samples up to fluence 0.55·1023 e/cm2 copper oxide of Cu2O composition is formed, and at the fluence 3.3·1023 e/cm2 - metallic copper. Phase transformations in TaS2 occur at the 1.74·1023 e/cm2 with the TaS formation. The model of the light atoms removal process under the action of electron irradiation has been developed. Within the framework of the developed model, the threshold displacement energy (Ed) values of oxygen atoms was found to be 31.3 eV in BiO2, 21.5 eV in CuO, and for sulfur atoms 15.2 eV in TaS2. Keywords: Electron energy loss spectroscopy (EELS), high-resolution transmission electron microscopy (HRTEM), electron irradiation, electron irradiation in situ in TEM, displacement threshold energy.
- R.F. Egerton, P. Li, M. Malac. Micron, 35 (6), 399 (2004). DOI: 10.1016/j.micron.2004.02.003
- D.B. Williams, C.B. Carter. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, NY., 2009)
- R.F. Egerton. Ultramicroscopy, 127, 100 (2013). DOI: 10.1016/j.ultramic.2012.07.006
- R.F. Egerton. Microsc. Res. Tech., 75 (11), 1550 (2012). DOI: 10.1002/jemt.22099
- R.F. Egerton. Micron., 119, 72 (2019). DOI: 10.1016/j.micron.2019.01.005
- N. Jiang. Reports Prog. Phys. IOP Publishing, 79, 016501 (2016). DOI: 10.1088/0034-4885/79/1/016501
- M.I. Buckett, J. Strane, D.E. Luzzi, J.P. Zhang, B.W. Wessels, L.D. Marks. Ultramicroscopy, 29, 217 (1989)
- L.A.J. Garvie, P.R. Buseck. J. Phys. Chem. Solids, 60 (12), 1943 (1999). DOI: 10.1016/S0022-3697(99)00218-8
- S.R. Gilliss, J. Bentley, C.B. Carter. Appl. Surf. Sci., 241 (1-2), 61 (2005). DOI: 10.1016/j.apsusc.2004.09.018
- A.C. Johnston-Peck, J.S. DuChene, A.D. Roberts, D. Wei, A.A. Herzing. Ultramicroscopy, 170, 1 (2016). DOI: 10.1016/j.ultramic.2016.07.002
- V.I.Nikolaichuk, B.P.Sobolev, M.A.Zaporozhets, A.S.Avilov. Kristallografiya, 57 (2), 348 (2012) (in Russian)
- D.Sindro, T Oikava. Analiticheskaya prosvetchivayushchaya elektronnaya mikroskopiya (Mir, M., 2006) (in Russian)
- W.A. McKinley, H. Feshbach. Phys. Rev., 74, 1759 (1948). DOI: 10.1103/PhysRev.74.1759
- B.A. Gurovich, K.E. Prikhod'ko. Phys. Usp., 52, 165 (2009). DOI: 10.3367/UFNe.0179.200902d.0179
- B.A. Gurovich, K.E. Prikhod'ko, E.A. Kuleshova, K.I. Maslakov, D.A. Komarov. J. Exp. Theor. Phys., 116, 916 (2013). DOI: 10.1134/S1063776113050191
- B.A. Gurovich, D.I. Dolgii, E.A. Kuleshova, E.P. Velikhov, E.D. Ol'shanskii, A.G. Domantovskii, B.A. Aronzon, E.Z. Meilikhov. Phys. Usp., 44, 95 (2001). DOI: 10.1070/PU2001v044n01ABEH000868
- D.I. Dolgii, E.D. Ol'shanskii, E.P. Ryazantsev. Konversiya v mashinostroenii, 3-4, 119, (1999) (in Russian)
- B. Begemann, M. Jansen. J. Less-Common Met., 156 (1-2), 123 (1989). DOI: https://doi.org/10.1016/0022-5088(89)90412-8
- A.F. Gualtieri, S. Immovilli, M. Prudenziati. Powder Diffr., 12 (2), 90 (1997). DOI: 10.1017/S0885715600009490
- N.E. Brese, M. O'Keeffe, B.L. Ramakrishna, R.B. Von Dreele. J. Solid State Chem., 89 (1), 184 (1990). DOI: 10.1016/0022-4596(90)90310-T
- R. Restori, D. Schwarzenbach. Acta Crystallogr. B, 42, 201 (1986). DOI: 10.1107/S0108768186098336
- H.E. Swanson, M.C. Morris, E.H. Evans, L. Ulmer. Standard X-ray Diffraction Powder Patterns (National Bureau of Standarts, Washington DC, 1964)
- W. Blitz, A. Kocher. Z. Anorg. Allg. Chem., 85, 237 (1938)
- H. Mutka, D. Lesueur, L. Zuppiroli. Radiat. Eff., 45 (3-4), 219 (1980). DOI: 10.1080/00337578008208433
- D. Lesueur, J. Morillo, H. Mutkaj, A. Audouard, J.C. Jousset. Radiat. Eff., 77 (1-2), 125 (1983). DOI: 10.1080/00337578308224729
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.