Recovery of EUV optical constants of thin films using laboratory reflectometry data
N.V. Zagaynov1, S. A. Garakhin1, S.S. Morozov1, V.N. Polkovnikov1, N. I. Chkhalo 1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: kolazagaunow41@gmail.com

PDF
The study has investigated whether laboratory reflectometry methods may be used for measuring optical constants of materials in extreme ultraviolet (EUV) range. Analysis has been performed on tantalum compounds used as absorbers for mask blanks. Experiment for reflection coefficient measurement depending on the wavelength and angle of incidence for lithographic mask absorber layers has been numerically simulated. The model considers real specifications of laboratory devices and measurement errors. Numerical experiment has shown that laboratory reflectometry was applicable to identification of parameters of thin films on substrates, and it has been proved experimentally that the method was suitable for real applications. Such structural parameters as densities, roughnesses and thicknesses can be recovered with high accuracy. Deviations of all experimental measurements from simulated values are less than 1 %, the experiment has shown good accuracy for optical constant recovery. Keywords: thin films, reflectometry, optical constants, tantalum, absorption, diffractometer, reflectometer, reflection coefficient, X-ray radiation, X-ray lithography.
  1. O. Wood, J. Arnold, T. Brunner, M. Burkhardt, J.H.-C. Chen, D. Civay, S.S.-C. Fan, E. Gallagher, S. Halle, M. He, C. Higgins, H. Kato, J. Kye, Ch.-S. Koay, G. Landie, P. Leung, G. McIntyre, S. Nagai, K. Petrillo, S. Raghunathan, R. Schlief, L. Sun, A. Wagner, T. Wallow, Yu. Yin, X. Zhu, M. Colburn, D. Corliss, C. Smolinski. Proceed. SPIE, 8322, 832203 (2012). DOI: 10.1117/12.916292
  2. N.I. Chkhalo, N.N. Salashchenko. AIP Advances, 3 (8), 082130 (2013)
  3. T. Watanabe, T. Harada, S. Yamakawa. Proc. SPIE, 11908, 1190807 (2021). DOI: 10.1117/12.2600896
  4. H. Levinson. Principles of Lithography, 4th ed. (SPIE, 2019), p. 524
  5. Hoya Corporation, Morio Hosoya. REFLECTIVE MASK BLANK AND METHOD OF MANUFACTURING A REFLECTIVE MASK (Pattent US No.: 8, 709, 685 B2 29.04.2014)
  6. T. Liang, E. Ultanir, G. Zhang, S.-J. Park, E. Anderson, E. Gullikson, P. Naulleau, F. Salmassi, P. Mirkarimi, E. Spiller, Sh. Baker. J. Vacuum Sci. Technol. B, 25 (6), 2098 (2007). DOI: 10.1116/1.2779044
  7. S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson. Jpn. J. Appl. Phys., 41 (6S), 4074 (2002)
  8. S.Yu. Zuev, R.S. Pleshkov, V.N. Polkovnikov, N.N. Salashchenko. M.V. Svechnikov, N.I. Chkhalo, F. Schafers, M.G. Sertsu, A. Sokolov. ZhTF, 89 (11), 1779 (2019). DOI: 10.21883/JTF.2019.11.48344.130-19
  9. T. Shoki, M. Hosoya, T. Kinoshita, H. Kobayashi, Y. Usui, R. Ohkubo, Sh. Ishibashi, O. Nagarekawa. Process development of 6-in EUV mask with TaBN absorber, Proc. SPIE 4754, Photomask and Next-Generation Lithography Mask Technology IX, (1 August 2002). DOI: 10.1117/12.477007
  10. F. Delmotte, J. Meyer-Ilse, F. Salmassi, R. Soufli, C. Burcklen, J. Rebellato, A. Je'Rome, I. Vickridge, E. Briand, E. Gullikson. J. Appl. Phys., 124, 035107 (2018)
  11. R. Soufli, F. Delmotte, J. Meyer-Ilse, F. Salmassi, N. Brejnholt, S. Massahi, D. Girou, F. Christensen, E.M. Gullikson. J. Appl. Phys., 125, 085106 (2019)
  12. M. Svechnikov, N. Chkhalo, A. Lopatin, R. Pleshkov, V. Polkovnikov, N. Salashchenko, F. Schafers, M.G. Sertsu, A. Sokolov, N. Tsybin. J. Synchrotron Rad., 27, 75 (2020). DOI: 10.1117/1.OE.60.4.044103
  13. R. Ciesielski, Q. Saadeh, V. Philipsen, K. Opsomer, J.-P. Soulie, M. Wu, P. Naujok, R.W.E. van de Kruijs, Ch. Detavernier, M. Kolbe, F. Scholze, V. Soltwisch. Appl. Optics, 61 (8), 2060 (2022). DOI: 10.1364/AO.447152
  14. V. Soltwisch, S. Glabisch, A. Andrle, V. Philipsen, Q. Saadeh, S. Schroder, L. Lohr, R. Ciesielski, S. Brose. High-precision optical constant characterization of materials in the EUV spectral range: from large research facilities to laboratory-based instruments. Proc. SPIE 12472, 37th European Mask and Lithography Conference, 124720Q (1 November 2022). DOI: 10.1117/12.2640176
  15. F. Scholze, J. Tummler, G. Ulm. Metrologia, 40, S224 (2003)
  16. F. Scholze, C. Laubis, C. Buchholz, A. Fischer, S. Ploeger, F. Scholz, H. Wagner, G. Ulm. Proc. SPIE, 5751, 749 (2005)
  17. S.S. Andreev, A.D. Akhsakhalyan, M.A. Bibishkin, N.I. Chkhalo, S.V. Gaponov, S.A. Gusev, E.B. Kluenkov, K.A. Prokhorov, N.N. Salashchenko, F. Schafers, S.Yu. Zuev. Centr. Europ. J. Phys., 1, 191 (2003)
  18. S.A. Garakhin, N.I. Chkhalo, I.A. Kas'kov, A.Ya. Lopatin, I.V. Malyshev, A.N. Nechay, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.V. Svechnikov, N.N. Tsybin, I.G. Zabrodin, S.Yu. Zuev. Rev. Sci. Instrum., 91 (6), 063103 (2020). DOI: 10.1063/1.5144489
  19. M. Svechnikov. J. Appl. Crystallogr., 53 (1), 244 (2020). DOI: 10.1107/S160057671901584X
  20. M. Svechnikov. J. Appl. Cryst., 57, 848 (2024). DOI: 10.1107/S1600576724002231

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru