Production of ultra-thin superconducting films from NbN by cathode sputtering at substrate temperatures 20 oC--120 oC
Gurovich B. A. 1, Goncharov B. V. 1, Prikhodko K. E. 1,2, Stolyarov V. L.1, Kutuzov L. V. 1, Goncharova D. A. 1, Malieva E. M.1, Dementyeva M. M. 1, Golubev G. U.1, Frolov A. S. 1
1National Research Center “Kurchatov Institute”, Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
Email: evgeniaorm555@gmail.com, Goncharov_bv@nrcki.ru, Prihodko_KE@nrcki.ru, kutuzov_lv@nrcki.ru

PDF
Ultrathin NbN films with a thickness of 5.5 nm were made by cathode sputtering. The films were sputtered on sapphire substrates at various temperatures from 20 oC to 120 oC. The transition temperature to the superconducting state, depending on the substrate temperature during sputtering, was 6.9-9.8 K. The technique of sputtering ultrathin NbN films using cathode sputtering (Penning cells) is described in detail. The critical current density of the studied films lies in the range of 1.12-3.5 105 A/cm2. Keywords: cathodic sputtering, niobium nitride, inhomogeneity, transition temperature to the superconducting state, critical current density
  1. A.D. Semenov, G.N. Gol'tsman, A.A. Korneev. Physica C, 351, 349 (2001). DOI: 10.1016/S0921- 4534(00)01637-3
  2. I.A. Stepanov, A.S. Baburin, D.V. Kushnev, E.V. Sergeev, O.I. Shmonina, A.R. Matanin, V.V. Echeistov, I.A. Ryzhikov, Yu.V. Panfi lov, I.A. Rodionov. APL Mater., 12, 021127 (2024). DOI: 10.1063/5.0188420
  3. H. Shi, T. Xu, Yi. Zhe, R. Su, J. Li, H. Bao, X. Tu, K. Fan, X. Jia, L. Kang, J. Chen, P. Wu. Appl. Phys. Lett., 126, 042601 (2025). DOI: 10.1063/5.0231315
  4. I. Tretyakov, S. Ryabchun, M. Finkel, A. Maslennikova, N. Kaurova, A. Lobastova, B. Voronov, G. Gol'tsman. Appl. Phys. Lett., 98, 033507 (2011). DOI: 10.1063/1.3544050
  5. A.N. McCaughan, K.K. Berggren. Nano Lett., 14, 10, 5748 (2014). DOI: 10.1021/nl502629x
  6. B.A. Gurovich, K.E. Prikhodko, L.V. Kutuzov, B.V. Goncharov, D.A. Komarov, E.M. Malieva. FTT, 64 (10), 1390 (2022) (in Russian). DOI: 10.21883/FTT.2022.10.53079.47HH
  7. B.A. Gurovich, K.E. Prikhodko, L.V. Kutuzov, B.V. Goncharov. FTT, 62 (9), 1420 (2020). DOI: 10.21883/FTT.2020.09.49764.23H
  8. Q. Zhang, H. Wang, X. Tang, H. Xue, W. Peng, Zh. Wang. IEEE Transactions Appl. Superconduct., 28 (8), 1100704 (2018). DOI: 10.1109/tasc.2018.2869803
  9. Z. Wang, H. Terai, W. Qiu, K. Makise, Y. Uzawa, K. Kimoto, Y. Nakamura. Appl. Phys. Lett., 102, 142604 (2013). DOI: 10.1063/1.4801972
  10. M. Ukibe, G. Fujii. IEEE Transactions Appl. Superconduct., 27 (4), 1051 (2016). DOI: 10.1109/TASC.2017.2655719
  11. M.J. Sowa, Y. Yemane, J. Zhang, J.C. Palmstrom, L. Ju, N.C. Strandwitz, F.B. Prinz, J. Provine. J. Vac. Sci. Technol. A, 35, 01B143 (2017). DOI: 10.1116/1.4972858
  12. R. Cheng, S. Wang, H.X. Tang. Appl. Phys. Lett., 115, 241101 (2019). DOI: 10.1063/1.5131664
  13. C. Sheagren, P. Barry, E. Shirokof, Q.Y. Tang. J. Low Temp. Phys., 199, 875 (2020). DOI: 10.1007/s10909-020-02336-2
  14. M. Ziegler, S. Linzen, S. Goerke, U. Bruckner, J. Plentz, J. Dellith, A. Himmerlich, M. Himmerlich, U. Hubner, S. Krischok, H.-G. Meyer. IEEE Transactions Appl. Superconduct., 27 (7), 1 (2017). DOI: 10.1109/tasc.2017.2744326
  15. M.V.Shibalov, A.A.Shibalova, A.R.Shevchenko, A.M.Mumlyakov, I.A.Filippov, M.A.Tarkhov. ZhTF, 95 (1), 84 (2025) (in Russian). DOI: 10.61011/JTF.2025.01.59463.183-24
  16. S. Linzen, M. Ziegler, O.V. Astafiev, M. Schmelz, U. Hubner, M. Diege, E. Il'ichev, H.-G. Meyer. Supercond. Sci. Technol., 30, 035010 (2017). DOI: 10.1088/1361-6668/aa572a
  17. S. Volkov, M. Gregor, T. Roch, L. Satrapinskyy, B. Grancic, T. Fiantok, A. Plecenik. J. Electrical Engeneer., 70 (7S), 89 (2019). DOI: 10.2478/jee-2019?0047
  18. V. Boffa, U. Gambardella, V. Marotta, A. Morone, F. Murtas, S. Orlando, G.P. Parisi. Appl. Surf. Sci., 106, 361 (1966). DOI: 10.1016/S0169-4332(96)00432-1
  19. M.A. Mamun, A.H. Farha, A.O. Er, Y. Ufuktepe, D. Gu, H.E. Elsayed-Ali, A.A. Elmustafa. Appl. Surf. Sci., 258 (10), 4308 (2012). DOI: 10.1016/j.apsusc.2011.12.089
  20. R.E. Treece, J.S. Horwitz, J.H. Claassen, D.B. Chrisey. Appl. Phys. Lett., 65, 2860 (1994). DOI: 10.1063/1.112516
  21. F. Mercier, S. Coindeau, S. Lay, A. Crisci, M. Benz, Th. Encinas, R. Boichot, A. Mantoux, C. Jimenez, F. Weiss, E. Blanquet. Surf. Coat. Technol., 260, 126 (2014). DOI: 10.1016/j.surfcoat.2014.08.084
  22. W. S ysz, M. Guziewicz, M. Borysiewicz, J.Z. Domagai a, I. Pasternak, K. Hejduk, W. Rzodkiewicz, J. Ratajczak, J. Bar, M. Wegrzecki, P. Grabiec, R. Grodecki, I. Wegrzecka, R. Sobolewski. Acta Phys. Polonica, Series a, 120 (1), 200 (2011). DOI: 10.12693/APhysPolA.120.200
  23. D. Hazra, N. Tsavdaris, S. Jebari, A. Grimm, F. Blanchet, F. Mercier, E. Blanquet, C. Chapelier, M. Hofheinz. Supercond. Sci. Technol., 29, 105011 (2016). DOI: 10.1088/0953-2048/29/10/105011
  24. R.E. de Lamaestre, Ph. Odier, E. Bellet-Amalric, P. Cavalier, S. Pouget, J.-C. Villegier. J. Phys.: Conf. Ser., 97, 012046 (2008). DOI: 10.1088/1742-6596/97/1/012046
  25. J.-C. Villegier, S. Bouat, P. Cavalier, R. Setzu, R.E. de Lamaestre, C. Jorel, P. Odier, B. Guillet, L. Mechin, M.P. Chauvat, P. Ruterana. IEEE Transactions Appl. Superconduct., 19 (3), 3375 (2009). DOI: 10.1109/TASC.2009.2019
  26. J.R. Gao, M. Hajenius, F.D. Tichelaar, T.M. Klapwijk, B. Voronov, E. Grishin, G. Gol'tsman, C.A. Zorman, M. Mehregany. Appl. Phys. Lett., 91, 062504 (2007). DOI: 10.1063/1.2766963
  27. F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, F. Levy. Opt. Express, 16 (5), 3191 (2008). DOI: 10.1364/OE.16.003191
  28. Sh. Miki, M. Fujiwara, M. Sasaki, Zh. Wang. IEEE Transactions Appl. Superconduct., 17 (2), 285 (2007). DOI: 10.1109/TASC.2007.898582
  29. R. Baskaran, A.V. Thanikai Arasu, E.P. Amaladass, M.P. Janawadkar. J. Appl. Phys., 116, 163908 (2014). DOI: 10.1063/1.4900436
  30. Z. Yang, X. Wei, P. Roy, D. Zhang, P. Lu, S. Dhole, H. Wang, N. Cucciniello, N. Patibandla, Zh. Chen, H. Zeng, Q. Jia, M. Zhu. Materials, 16, 7468 (2003). DOI: 10.3390/ ma16237468
  31. E.I. Alessandrini, V. Sadagopan, R.B. Laibowitz. J. Vacuum Sci. Technol., 8, 188 (1971). DOI: 10.1116/1.1316283
  32. K. Buttig, H. Liemersdorf, H. Kinder, K. Reichelt. J. Appl. Phys., 44, 5069 (1973). DOI: 10.1063/1.1662091
  33. H.-J. Hedbabny, H. Rogalla. J. Appl. Phys., 63, 2086 (1988). DOI: 10.1063/1.341113
  34. D. Dochev, V. Desmaris, A. Pavolotsky, D. Meledin, Z. Lai, A. Henry, E. Janzen, E. Pippe, J. Woltersdorf, V. Belitsky. Supercond. Sci. Technol., 24, 035016 (2011). DOI: 10.1088/0953-2048/24/3/035016
  35. P. Feautrier, E. le Coarer, R.E. de Lamaestre, P. Cavalier, L. Maingault, J.C. Villegier, L. Frey, J. Claudon, N. Bergeard, M. Tarkhov, J.-P. Poizat. J. Phys.: Conf. Ser., 97, 012087 (2008). DOI: 10.1088/1742-6596/97/1/012087
  36. R.E. de Lamaestre, Ph. Odier, J.-C. Villegier. Appl. Phys. Lett., 91, 232501 (2007). DOI: 10.1063/1.2820607
  37. D.I. Dolgii, E.D. Ol'shanskii, E.P. Ryazantsev. Konversiya v mashinostroenii, 3-4, 119 (1999) (in Russian)
  38. K.E. Prikhodko, M.M. Dementieva. ZhTF, 94 (8), 1314 (2024). (in Russian)
  39. D.B. Williams, C.B. Carter. Transmission Electron Microscopy: A Textbook for Materials Science (Springer, 2009)
  40. B.A. Gurovich, K.E. Prikhod'ko, M.A. Tarkhov, E.A. Kuleshova, D.A. Komarov, V.L. Stolyarov, E.D. Ol'shanskii, B.V. Goncharov, D.A. Goncharova, L.V. Kutuzov, A.G. Domantovskii, Z.V. Lavrukhina, M.M. Dement'eva. Nanotechnol. Russ., 10 (7-8), 530 (2015). DOI: 10.1134/S1995078015040072

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru