Effect of synthesis conditions on the structure and electronic properties of diamond-like carbon films with iridium nanoparticles
Bekmurat F.1,2, Ryaguzov A. P.1, Nemkayeva R. R.1, Assembayeva A. R.1,3, Guseinov N. R.1, Yersaiyn R.Zh.4
1National nanotechnology laboratory of open type, Al-Farabi Kazakh National University, Almaty, Kazakhstan
2Department of Solid State and Technology of New Materials, Al-Farabi KazNU, Almaty, Kazakhstan
3Kazakh National Technical Research University, Almaty, Kazakhstan
4D.V.Sokolsky Institute of Fuel, Catalysis and Electrochemistry, Almaty, Kazakhstan
Email: zh.fariza1@mail.ru, ryaguzov_a@mail.ru, quasisensus@mail.ru, aliya.asembaeva@mail.ru, solar_neo@mail.ru, yer_ray@mail.ru

PDF
This study investigates the possibility of controlling the sp^2/sp3 hybridized bond ratio in diamond-like carbon (DLC) films modified with iridium nanoparticles. The DLC films were synthesized by magnetron sputtering of a combined target. Surface morphology and elemental composition of the DLC films were studied using electron microscopy and EDS analysis. Scanning electron microscopy revealed that iridium forms nanoparticles within the carbon matrix. Raman spectroscopy was employed to investigate the local structure of amorphous DLC films depending on synthesis conditions and iridium concentration. The dependence of the G, D, and T peak positions on synthesis conditions and iridium concentration was demonstrated. The intensity ratio I_D/IG was calculated, and changes in the full width at half maximum (FWHM) of the G peak as a function of iridium concentration were shown. Additionally, the shift of the G peak dispersion from a diamond-like to a graphite-like phase with increasing iridium concentration was observed. The value of bandgap of DLC films containing iridium nanoparticles was determined, and its dependence on synthesis conditions and iridium concentration was shown. Furthermore, percolation conductivity was observed in DLC films with iridium nanoparticles at an iridium concentration of 0.9 at.%. Keywords: Magnetron sputtering, diamond-like carbon film, nanoparticle, iridium, Raman spectroscopy.
  1. J. Robertson. Phys. Stat. Sol. (A), 205 (9), 2233 (2008). https://doi.org/10.1002/pssa.200879720
  2. A.I. Okhapkin, P.A. Yunin, E.A. Arkhipov, S.A. Kraev, S.A. Korolev, M.N. Drozdov, V.I. Shashkin. FTP, 54 (9), 865 (2020) (in Russian). DOI: 10.21883/FTP.2020.09.49822.14
  3. V.A. Vlasenko, S.N. Belyaev, A.G. Efimov, E.A. Ilyichev, M.D. Malenkovich, V.E. Nemirovsky, E.A. Poltoratsky, A.V. Goryachev, A.F. Popkov, G.V. Frolova, M.L. Shulepin, Pis'ma v ZhTF, 35 (15), 105 (2009) (in Russian)
  4. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund. Science of Fullerenes and Carbon Nanotubes (Academic Press, London, 1996)
  5. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim. Proc. Nat. Acad. Sci. U.S.A., 102 (30), 10451 (2005). https://doi.org/10.1073/pnas.0502848102
  6. D. Li, N. Kong, R. Li, B. Zhang, Y. Zhang, Zh. Wu, Q. Zhang. Surf. Topography: Metrology and Properties, 9 (4), (2021). DOI: 10.1088/2051-672X/ac4086
  7. P.A. Radi, L. Vieira, P. Leite, V.J. Trava-Airoldi, M. Massi, D.A.P. Reis. Surface Topography: Metrology and Properties, 12 (1), 10 (2024). DOI: 10.1088/2051-672X/ad2ebe
  8. Kunming Gu, Yi Zheng, Junxuan Luo, Xiande Qin, Xinge Yang, Nadeem Abbas, Jiaoning Tang. Mater. Res. Express, 6 (8), 2019. DOI: 10.1088/2053-1591/ab197b
  9. Yeong Ju Jo, Teng Fei Zhang, Myoung Jun Son, Kwang Ho Kim. Appl. Surf. Sci., 433, 1184 (2018). DOI: 10.1016/j.apsusc.2017.10.151
  10. Shuling Zhang, Shuaizheng Wu, Tenglong Huang, Xiangdong Yang, Feng Guo, Bo Zhang, Wenjie Ding. Coatings, 13 (10), 1743 (2023). https://doi.org/10.3390/coatings13101743
  11. Haibo Sun, Lv Yang, Huaichao Wu, Limei Zhao, Bin Ji. Appl. Surf. Sci., 641, 158545 (2023). https://doi.org/10.1016/j.apsusc.2023.158545
  12. A.F. Yetim, H. Kovaci, A.E. Kasapov glu, Y.B. Bozkurt, A. Celik. Diamond and Related Mater., 120, 108639 (2021). https://doi.org/10.1016/j.diamond.2021.108639
  13. A. Modabberas, P. Kameli, M. Ranjbar, H. Salamati, R. Ashiri. Carbon, 94, 485 (2015). https://doi.org/10.1016/j.carbon.2015.06.081
  14. B. Pandey, S. Hussain. J. Phys. Chem. Solids, 72 (10), 1111 (2011). https://doi.org/10.1016/j.jpcs.2011.06.003
  15. B. Ghos, F. Guzman-Olivos, R. Espinoza-Gonzalez. Mater. Sci., 52, 218 (2017)
  16. A.P. Ryaguzov, R.R. Nemkayeva, N.R. Guseinov, A.R. Assembayeva, S.I. Zaitsev. J. Non-Crystalline Solids, 532, 119876 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119876
  17. F. Bekmurat, R.R. Nemkayeva, N.R. Guseinov, M.M. Myrzabekova, A.P. Ryaguzov. Mater. Today: Proceed., 25, 13 (2019). https://doi.org/10.1016/j.matpr.2019.10.129
  18. Elnaz Mohammadini, Seyed Mohammad Elahi, Sheila Shahidi. Mater. Sci. Semicond. Process., 74, 7 (2018). https://doi.org/10.1016/j.mssp.2017.10.003
  19. Raviraj Vankayala, Ganesh Gollavelli Badal Kumar Mandal. J. Mater. Sci.: Mater. Med., 24, 1993 (2013). DOI: 10.1007/s10856-013-4952-z
  20. A.L. Ivanovsky. Uspekhi khimii 78, (4) (2009) (in Russian)
  21. A. Modabberasl, P. Kameli, M. Ranjbar, H. Salamati, R. Ashiri. Carbon, 94, 485 (2015). https://doi.org/10.1016/j.carbon.2015.06.081
  22. R.A. Alawajji, G.K. Kannarpady, Z.A. Nima, N. Kelly, F. Watanabe, A.S. Biris. Appl. Surf. Sci., 437, 429 (2018). https://doi.org/10.1016/j.apsusc.2017.08.058
  23. A.I. Okhapkin, M.N. Drozdov, P.A. Yunin, S.A. Kraev, D.B. Radishchev. FTP, 57 (5), 309 (2023) (in Russian). DOI: 10.21883/FTP.2023.05.56195.09k
  24. P.A. Yunin, A.I. Okhapkin, M.N. Drozdov, S.A. Korolev, E.A. Arkhipov, S.A. Kraev, Yu.N. Drozdov, V.I. Shashkin, D.B. Radishchev. FTP, 54 (9), 855 (2020) (in Russian). DOI: 10.21883/FTP.2020.09.49820.12
  25. J. Robertson. Semicond. Sci. Technol., 18, 12 (2003). DOI: 10.1088/0268-1242/18/3/302
  26. J. Robertson. Mater. Sci. Eng. R, 37 (4-6), 129 (2002). https://doi.org/10.1016/S0927-796X(02)00005-0
  27. A.C. Ferrari, J. Robertson. Phys. Rev. B., 61 (20), 14095 (2000). https://doi.org/10.1103/PhysRevB.61.14095
  28. F.C. Tai, S.C. Lee, C.H. Wei, S.L. Tyan. Mater. Transactions, 47 (7), 1847 (2006). DOI: 10.2320/matertrans.47.1847
  29. C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson. Diamond \& Related Mater., 14, 1098 (2005). DOI: 10.1103/PhysRevB.72.085401
  30. J. Robertson, A.C. Ferrari. Phil. Trans. R. Soc. Lond. A, 362, 2477 (2004). https://doi.org/10.1098/rsta.2004.1452
  31. A.P. Ryaguzov, R.R. Nemkaeva, O.I. Yukhnovets, N.R. Guseinov, S.L. Mikhailova, F. Bekmurat, A.R. Asembaeva. Opt. i spektr., 127 (2), 251 (2019) (in Russian). DOI: 10.21883/OS.2019.08.48037.33-19
  32. J. Robertson, E.P. O'Reilly. Phys. Rev. B, 35 (6), 2946 (1987)
  33. K.V. Shalimova, Fizika poluprovodnikov (Energoatomizdat, M., 1985), 392 s. (in Russian)
  34. J. Tauc. Prog. Semicond., 9, 89 (1965)
  35. A.P. Ryaguzov, R.R. Nemkaeva, N.R. Guseinov. FTP, 52 (10), 1207 (2018) (in Russian). DOI: 10.21883/FTP.2018.10.46463.8785
  36. A. Grill. Thin Solid Films, 355--356, 189 (1999). https://doi.org/10.1016/S0040-6090(99)00516-7
  37. E. Staryga, G.W. B ak. Diamond Related Mater., 14 (1), 23 (2005). https://doi.org/10.1016/j.diamond.2004.06.030
  38. B.I. Shklovski, A.L. Efros. Adv. Phys. Sci., 18 (11), 24 (1975). DOI: 10.1070/PU1975v018n11ABEH005233
  39. V.I. Roldughin, V.V. Vysotskii. Prog. Org. Coat., 39 (2-4), 81 (2000). https://doi.org/10.1016/S0300-9440(00)00140-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru