Stable sols of carboxylated diamond nanoparticles in dimethyl sulfoxide
Martyanov D. E.1, Dideikin A. T.1, Trofimuk A. D.1, Vul’ A. Ya.1
1Ioffe Institute, St. Petersburg, Russia
Email: molibdenchik@mail.ioffe.ru

PDF
Stable sols of diamond nanoparticles produced by detonation synthesis with negative electrokinetic potential in dimethyl sulfoxide, one of the most common non-aqueous solvents widely used in organic synthesis and medicine, were obtained for the first time. Sol stability is achieved by steric stabilization of the surface of diamond nanoparticles due to a cationic surfactant, cetyltrimethylammonium bromide, which binds to the carboxyl groups of diamond nanoparticles. The obtained stable sols can be used for subsequent chemical modification of the surface of diamond nanoparticles. Keywords: Diamond nanoparticles, detonation synthesis, dimethyl sulfoxide, sols, stability of colloidal systems, surfactants.
  1. A.Ya. Vul', O.A. Shenderova (red.). Detonatsyonnye nanoalmazy. Tekhnologiya, struktura, svoistva i primeneniya (Izd-vo FTI im. A.F. Ioffe, SPb, 2016) (in Russian)
  2. V.Yu. Dolmatov, A.N. Ozerin, I.I. Kulakova, O.O. Bochechka, N.M. Lapchuk, V. Myllymaki, A. Vehanen. Russ. Chem. Rev., 89 (12), 1428 (2020). DOI: 10.1070/RCR4924
  3. L. Basso, M. Cazzanelli, M. Orlandi, A. Miotello. Appl. Sci., 10 (12), 4094 (2020). DOI: 10.3390/app10124094
  4. P. Karami, S. Salkhi Khasraghi, M. Hashemi, S. Rabiei, A. Shojaei. Adv. Colloid Interface Sci., 269, 122 (2019). DOI: 10.1016/j.cis.2019.04.006
  5. D. Terada, T.F. Segawa, A.I. Shames, S. Onoda, T. Ohshima, E. \=Osawa, R. Igarashi, M. Shirakawa. ACS Nano, 13 (6), 6461 (2019). DOI: 10.1021/acsnano.8b09383
  6. A.S. Chizhikova, E.B. Yudina, A.M. Panich, M. Salti, Yu.V. Kulvelis, A.I. Shames, O. Prager, E. Swissa, A.E. Aleksinski, A.Ya. Vul. ZhTF, 94 (9), 1474 (2024). (in Russian) DOI: 10.61011/JTF.2024.09.58667.70-24
  7. J. Lazovic, E. Goering, A. Wild, P. Schutzendube, A. Shiva, J. Loffler, G. Winter, M. Sitti. Adv. Mater., 36 (11), 2310109 (2024). DOI: 10.1002/adma.202310109
  8. A.V. Shvidchenko, E.D. Eidelman, A.Ya. Vul', N.M. Kuznetsov, D.Yu. Stolyarova, S.I. Belousov, S.N. Chvalun. Adv. Colloid Interface Sci., 268, 64 (2019). DOI: 10.1016/j.cis.2019.03.008
  9. A. Kruger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A.E. Aleksenskii, A.Ya. Vul', E. \=Osawa. Carbon, 43 (8), 1722 (2005). DOI: 10.1016/j.carbon.2005.02.020
  10. O.A. Williams, J. Hees, C. Dieker, W. Jager, L. Kirste, C.E. Nebel. ACS Nano, 4 (8), 4824 (2010). DOI: 10.1021/nn100748k
  11. A.E. Aleksenskiy, E.D. Eydelman, A.Ya. Vul'. Nanosci. Nanotechnol. Lett., 3 (1), 68 (2011). DOI: 10.1166/nnl.2011.1122
  12. N. Nunn, M. Torelli, G. McGuire, O. Shenderova. Current Opinion in Solid State and Mater. Sci., 21 (1), 1 (2017). DOI: 10.1016/j.cossms.2016.06.008
  13. Y.-J. Zhai, Z.-C. Wang, W. Huang, J.-J. Huang, Y.-Y. Wang, Y.-Q. Zhao. Mater. Sci. Engineer.: A, 528 (24), 7295 (2011). DOI: 10.1016/j.msea.2011.06.053
  14. I. Neitzel, V. Mochalin, I. Knoke, G.R. Palmese, Y. Gogotsi. Compos. Sci. Technol., 71 (5), 710 (2011). DOI: 10.1016/j.compscitech.2011.01.016
  15. E.V. Sivtsov, A.V. Kalinin, A.I. Gostev, A.V. Smirnov, L.B. Agibalova, F.A. Shumilov. Vysokomolek. soed. B, 62, 6 (465) (in Russian) DOI: 10.31857/S2308113920050137
  16. S. Banerjee, R. Sharma, K.K. Kar. In: Composite Materials ed. by K.K. Kar (Berlin, Heidelberg, Springer Berlin Heidelberg, 2017), p. 251-280. DOI: 10.1007/978-3-662-49514-8_8
  17. Z. Chen, Y. Liu, J. Luo. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 489, 400 (2016). DOI: 10.1016/j.colsurfa.2015.10.062
  18. G. Zy a, J.P. Vallejo, J. Fal, L. Lugo. Intern. J. Heat Mass Transfer, 121, 1201 (2018). DOI: 10.1016/j.ijheatmasstransfer.2018.01.073
  19. M. Nishikawa, M. Liu, T. Yoshikawa, H. Takeuchi, N. Matsuno, N. Komatsu. Carbon, 205, 463 (2023). DOI: 10.1016/j.carbon.2023.01.025
  20. N. Nunn, O. Shenderova. Phys. Status Solidi A, 213 (8), 2138 (2016). DOI: 10.1002/pssa.201600224
  21. T. Dolenko, S. Burikov, K. Laptinskiy, J.M. Rosenholm, O. Shenderova, I. Vlasov. Phys. Status Solidi A, 212 (11), 2512 (2015). DOI: 10.1002/pssa.201532203
  22. V.N. Mochalin, Y. Gogotsi. J. Am. Chem. Soc., 131 (13), 4594 (2009). DOI: 10.1021/ja9004514
  23. C.-C. Li, C.-L. Huang. Colloids Surf. Physicochem. Eng. Asp., 353 (1), 52 (2010). DOI: 10.1016/j.colsurfa.2009.10.019
  24. Yu.N. Kukushkin Sorosovskiy obrazovatel'nyy zhurnal, 9 (54), (1997) (in Russian)
  25. J. Clayden, N. Greeves, S. Warren. Organic chemistry (Oxford university press, Oxford, 2012)
  26. D.R. Klein. Organic chemistry (Wiley, Hoboken, NJ., 2021)
  27. Z. Tashrifi, M.M. Khanaposhtani, B. Larijani, M. Mahdavi. Adv. Synthesis Catalysis, 362 (1), 65 (2020). DOI: 10.1002/adsc.201901021
  28. M.V. Polynski, M.D. Sapova, V.P. Ananikov. Chem. Sci., 11 (48), 13102 (2020). DOI: 10.1039/D0SC04752J
  29. D.A. Tebbe, C. Gruender, L. Dlugosch, K. Lohmus, S. Rolfes, M. Konneke, Y. Chen, B. Engelen, H. Schafer. The ISME J., 17 (12), 2340 (2023). DOI: 10.1038/s41396-023-01539-1
  30. J. Capriotti, K. Capriotti. Int. Med. Case Rep. J., 8, 231 (2015). DOI: 10.2147/IMCRJ.S90775
  31. D. Ho. Nanodiamonds: applications in biology and nanoscale medicine (Springer, NY., 2010)
  32. A.C. Williams, B.W. Barry. Adv. Drug. Deliv. Rev., 56 (5), 603 (2004). DOI: 10.1016/j.addr.2003.10.025
  33. O. Shenderova, S. Hens, G. McGuire. Diam. Relat. Mater., 19 (2-3), 260 (2010). DOI: 10.1016/j.diamond.2009.10.008
  34. N.O. Mchedlov-Petrossyan, N.N. Kriklya, A.N. Laguta, E. \=Osawa. Liquids, 2 (3), 196 (2022). DOI: 10.3390/liquids2030013
  35. A.E. Aleksenskii, A.S. Chizhikova, V.I. Kuular, A.V. Shvidchenko, E.Yu. Stovpiaga, A.D. Trofimuk, B.B. Tudupova, A.N. Zhukov. Diam. Relat. Mater., 142, 110733 (2024). DOI: 10.1016/j.diamond.2023.110733
  36. L. Fang, H. Lei, Y. Cao, J. Wang, Y. Yang, W. Wang. Diam. Relat. Mater., 128, 109236 (2022). DOI: 10.1016/j.diamond.2022.109236
  37. Yu.Ya. Fialkov, A.N. Zhitomirsky, Yu.A. Tarasenko. Fizicheskaya khimiya nevodnykh rastvorov (Khimiya, L., 1973) (in Russian)
  38. Yu.Ya. Fialkov. Rastvoritel kak sredstvo upravleniya khimicheskim protsessom (Khimiya, L., 1990)
  39. A.V. Shvidchenko. Sruktura i svoistva poverkhtosti svobodnykh tchastits detonatsionnogo nanoalmaza (kand. diss., FTI im. A.F. Ioffe RAN, SPb., 2018) (in Russian)
  40. S. Haghighatafshar, E. Hallinger, D. Espinoza, B. Al-Rudainy. Water Pract. Technol., 19 (5), 1810 (2024). DOI: 10.2166/wpt.2024.040
  41. G. Cunningham, M. Lotya, C.S. Cucinotta, S. Sanvito, S.D. Bergin, R. Menzel, M.S.P. Shaffer, J.N. Coleman. ACS Nano, 6 (4), 3468 (2012). DOI: 10.1021/nn300503e
  42. K. Maleski, V.N. Mochalin, Y. Gogotsi. Chem. Mater., 29 (4), 1632 (2017). DOI: 10.1021/acs.chemmater.6b04830
  43. P.N. Nesterenko, D. Mitev, B. Paull. In: Nanodiamonds. Advanced Material Analysis, Properties and Applications, ed. by J.-C. Arnault (Amsterdam, Elsevier, 2017), p. 109-130
  44. M. Mermoux, S. Chang, H.A. Girard, J.-C. Arnault. Diam. Relat. Mater., 87, 248 (2018). DOI: 10.1016/j.diamond.2018.06.001
  45. A. Krueger. Carbon materials and nanotechnology (Wiley-VCH, Weinheim, 2010)
  46. A.I. Shames, A.M. Panich, W. Kempinski, A.E. Alexenskii, M.V. Baidakova, A.T. Dideikin, V.Yu. Osipov, V.I. Siklitski, E. Osawa, M. Ozawa, A.Ya. Vul'. J. Phys. Chem. Sol., 63 (11), 1993 (2002). DOI: 10.1016/S0022-3697(02)00185-3
  47. V.F. Traven. Organicheskaya khimiya (Laboratoriya znaniy, M., 2021) (in Russian)
  48. K. Nakanisi. Infrakrasnye spektry i stroenie organicheskikh soedineniy, pod red. A.A. Maltseva; per. N.B. Kupletskaya, L.M. Epstein (Mir, M., 1965) (in Russian)
  49. B.N. Tarasevich. IK spektry osnovnykh klassov organicheskikh soedinenii. Spravochnye materialy (MGU im M.V. Lomonosova, khimichesky facultet, kafedra organicheskoi khimii, M., 2012) (in Russian)
  50. A.N. Zhukov, A.V. Shvidchenko, E.B. Yudina. Colloid J., 82 (4), 369 (2020). DOI: 10.1134/S1061933X20040171
  51. T. Petit, L. Puskar. Diam. Relat. Mater., 89, 52 (2018). DOI: 10.1016/j.diamond.2018.08.005
  52. V.Yu. Dolmatov, A.N. Ozerin, A.P. Voznyakovsky, A.A. Voznyakovsky, N.M. Lapchuk, A.I. Shames, A.M. Panich. Izvestiya SPbGTI(TU), 66 (92), 31 (2023) (in Russian). DOI: 10.36807/1998-9849-2023-66-92-31-34
  53. M.S. Shestakov, S.P. Vul', A.T. Dideikin, T.V. Larionova, A.V. Shvidchenko, E.B. Yudina, V.V. Shnitov. J. Phys. Conf. Ser., 1400 (5), 055044 (2019). DOI: 10.1088/1742-6596/1400/5/055044
  54. G. Su, C. Yang, J.-J. Zhu. Langmuir, 31 (2), 817 (2015). DOI: 10.1021/la504041f
  55. F. Ai, G. Zhao, W. Lv, J. Lin. Mater. Res. Express, 7 (8), 085008 (2020). DOI: 10.1088/2053-1591/abad15
  56. M.M. Krishtal, I.C. Yasnikov, V.I. Polunin, A.M. Filatov, A.G. Ulyanenkov. Skaniruyushchaya elekronnaya mikroskopiya i rentgenospekralnyi mikroanaliz v primerakh prakticheskogo primeneniya (Tekhnosfera, M., 2009) (in Russian)
  57. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT, 2013
  58. S. Skoglund, E. Blomberg, I.O. Wallinder, I. Grillo, J.S. Pedersen, L.M. Bergstrom. Phys. Chem. Chem. Phys., 19 (41), 28037 (2017). DOI: 10.1039/C7CP04662F
  59. R. Li, Z. Wang, X. Gu, C. Chen, Y. Zhang, D. Hu. ACS Omega, 5 (10), 4943 (2020)
  60. V.A. Rabinovich, Z.Ya. Khavin, Kratkiy khimichesliy spravochnik (Khimiya, L.,1978) (in Russian)
  61. G.A. Badun, M.G. Chernysheva, A.V. Gus'kov, A.V. Sinolits, A.G. Popov, A.V. Egorov, T.B. Egorova, I.I. Kulakova, G.V. Lisichkin. Fullerenes, Nanotubes and Carbon Nanostructures, 28 (5), 361 (2020). DOI: 10.1080/1536383X.2019.1685982
  62. D.J. Shaw. Introduction to colloid and surface chemistry (Butterworth-Heinemann, Oxford, 1992)
  63. O.V. Tomchuk, M.V. Avdeev, A.T. Dideikin, A.Ya. Vul', A.E. Aleksenskii, D.A. Kirilenko, O.I. Ivankov, D.V. Soloviov, A.I. Kuklin, V.M. Garamus, Yu.V. Kulvelis, V.L. Aksenov, L.A. Bulavin. Diam. Relat. Mater., 103, 107670 (2020). DOI: 10.1016/j.diamond.2019.107670
  64. H.-D. Wang, Q. Yang, C.H. Niu, I. Badea. Diam. Relat. Mater., 20 (8), 1193 (2011). DOI: 10.1016/j.diamond.2011.06.015

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru