Murashko D.T.1, Kurilova U.E.1,2, Suetina I.A.3, Russu L.I.3, Kuksin A.V.1, Mezentseva M.V.3, Kitsyuk E.P.4, Markov A.G.2, Telyshev D.V.2,1, Gerasimenko A.Yu.1,2
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russian Federation
2Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
3National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Moscow, Russia
4Scientific-Manufacturing Complex “Technological Centre”, Moscow, Russia
Email: gerasimenko@bms.zone
The paper presents a technology for the formation of carbon framework nanomaterials for the creation of neurointerfaces between electronic stimulating devices and neural tissue cells. Nanomaterials were formed by spray deposition and laser patterning of layers of single-walled carbon nanotubes and reduced graphene oxide. Radiation of the first harmonic of a nanosecond ytterbium fiber laser with a wavelength of 1064 nm and power of 0.07 W provided the formation of an electrically conductive framework of nanotubes, reduced graphene oxide and their hybrid structures, which was demonstrated by scanning electron microscopy and Raman spectroscopy. It is shown that laser exposure provided an increase in electrical conductivity from 1.2 to 3.5 times (up to 37.8±1.2 mS for hybrid structures from single-walled carbon nanotubes and reduced graphene oxide). The specified topologies from carbon frame nanomaterials were formed for their use as neurointerfaces with the generator of electrical pulses on the basis of a tablet for cell cultivation. Electrical stimulation in the process of cultivation provides an increase in the number of cells. An increase in the number of cells by 4.3 times for fibroblasts and 2.9 times for neural tissue cells grown on carbon frame nanomaterials compared to cells grown under conventional conditions was obtained. Formed carbon frame nanomaterials are promising for transmission of electrical signals in cell culture devices and other implantable devices, including neurointerfaces. Keywords: carbon nanotubes, reduced graphene oxide, bioelectronics, neural interfaces, electrical stimulation.
- S.H. Ku, M. Lee, C.B. Park. Adv. Healthcare Mater., 2 (2), 244 (2013). https://doi.org/10.1002/adhm.201200307
- C. Satishkumar, P.J. Thomas, A. Govindaraj, C.N.R. Rao. Appl. Phys. Lett., 77, 2530 (2000). https://doi.org/10.1063/1.1319185
- M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan. Phys. Rev. Lett., 89, 075505 (2002). https://doi.org/10.1103/PhysRevLett.89.075505
- J. Kim, G.G. Kim, S. Kim, W. Jung. Appl. Phys. Lett., 108, 203110 (2016). https://doi.org/10.1063/1.4952397
- G. Ho, A. Wee, J. Lin. Appl. Phys. Lett., 79, 260 (2001). https://doi.org/10.1063/1.1383279
- J. Han, M.P. Anantram, R.L. Jaffe, J. Kong, H. Dai. Phys. Rev. B, 57 (23), 14983 (1998). https://doi.org/10.1103/PhysRevB.57.14983
- M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein. Biomed. Microdevices, 16, 43 (2014). DOI: 10.1007/s10544-013-9804-6
- B.C. Kang, T.J. Ha. Jpn. J. Appl. Phys., 57 (5S), 05GD02 (2018). DOI: 10.7567/JJAP.57.05GD02
- Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei, M. Li, S. Ji, Q. Wu, J. Jian, F. Wu, Y. Shen, H. Tian, Y. Yang, T.L. Ren. Nanoscale, 11 (41), 18923 (2019). DOI: 10.1039/C9NR05532K
- Q.L. Zhao, Z.M. Wang, J.H. Chen, S.Q. Liu, Y.K. Wang, M.Y. Zhang, J.-J. Di, G.-P. He, L. Zhao, T.-T. Su, J. Zhang, X. Liang, W.-L. Song, Z.L. Hou. Nanoscale, 13 (24), 10798 (2021). DOI: 10.1039/D0NR08032B
- A. Kuksin, D. Murashko, A. Gerasimenko. Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), IEEE, 250 (2022). DOI: 10.1109/CSGB56354.2022.9865613
- N. Nekrasov, N. Yakunina, V. Nevolin, I. Bobrinetskiy, P. Vasilevsky, A.Y. Gerasimenko. Biomimetics, 6 (4), 66 (2021). DOI: 10.3390/biomimetics6040066
- A.Y. Gerasimenko, A.V. Kuksin, Y.P. Shaman, E.P. Kitsyuk, Y.O. Fedorova, D.T. Murashko, A.A. Shamanaev, E.M. Eganova, A.V. Sysa, M.S. Savelyev, D.V. Telyshev, A.A. Pavlov, O.E. Glukhova. Nanomaterials, 12 (16), 2812 (2022). DOI: 10.3390/nano12162812
- A.Yu. Gerasimenko, E. Kitsyuk, U.E. Kurilova, I.A. Suetina, L. Russu, M.V. Mezentseva, A. Markov, A.N. Narovlyansky, S. Kravchenko, S.V. Selishchev, O.E. Glukhova. Polymers, 14 (9), 1866 (2022). DOI: 10.3390/polym14091866
- A.Y. Gerasimenko, A.V. Kuksin, Y.P. Shaman, E.P. Kitsyuk, Y.O. Fedorova, A.V. Sysa, A.A. Pavlov, O.E. Glukhova. Nanomaterials, 11, 1875 (2021). DOI: 10.3390/NANO11081875
- A.Y. Gerasimenko, G.N. Ten, D.I. Ryabkin, N.E. Shcherbakova, E.A. Morozova, L.P. Ichkitidze. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 227, 117682 (2020). DOI: 10.1016/j.saa.2019.117682
- M.S. Savelyev, A.Y. Gerasimenko, P.N. Vasilevsky, Y.O. Fedorova, T. Groth, G.N. Ten, D.V. Telyshev. Anal. Biochem., 598, 113710 (2020). DOI: 10.1016/J.AB.2020.113710
- A.Y. Gerasimenko, U.E. Kurilova, M.S. Savelyev, D.T. Murashko, O.E. Glukhova. Compos. Struct., 260, 113517 (2021). DOI: 10.1016/j.compstruct.2020.113517
- A.Y. Gerasimenko, U.E. Kurilova, I.A. Suetina, M.V. Mezentseva, A.V. Zubko, M.I. Sekacheva, O.E. Glukhova. Appl. Sci., 11, 8036 (2021). DOI: 10.3390/APP11178036
- N.A. Demidenko, A.V. Kuksin, V.V. Molodykh, E.S. Pyankov, L.P. Ichkitidze, V.A. Zaborova, A.A. Tsymbal, S.A. Tkachenko, H. Shafaei, E. Diachkova, A.Yu. Gerasimenko. Bioeng., 9, 36 (2022). DOI: 10.3390/BIOENGINEERING9010036
- Y. Yuan, J. Chen. Laser Phys. Lett., 13 (2016). DOI: 10.1088/1612-2011/13/6/066001
- L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen. Phys. Rev. Lett., 76, 971 (1996). DOI: 10.1103/PHYSREVLETT.76.971
- M. Griffin, S.A. Iqbal, A. Sebastian, J. Colthurst, A. Bayat. PLoS One, 6, e23404 (2011). DOI: 10.1371/journal.pone.0023404
- N. Matsuki, M. Takeda, T. Ishikawa, A. Kinjo, T. Hayasaka, Y. Imai, T. Yamaguchi. Oncol. Rep., 23, 1425 (2010). DOI: 10.3892/OR_00000780/HTML
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.