Carbon framework nanomaterials for stimulation of neural tissue cells
Murashko D.T.1, Kurilova U.E.1,2, Suetina I.A.3, Russu L.I.3, Kuksin A.V.1, Mezentseva M.V.3, Kitsyuk E.P.4, Markov A.G.2, Telyshev D.V.2,1, Gerasimenko A.Yu.1,2
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russian Federation
2Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
3National Research Center for Epidemiology and Microbiology Named after the Honorary Academician N.F. Gamaleya, Moscow, Russia
4Scientific-Manufacturing Complex “Technological Centre”, Moscow, Russia
Email: gerasimenko@bms.zone

PDF
The paper presents a technology for the formation of carbon framework nanomaterials for the creation of neurointerfaces between electronic stimulating devices and neural tissue cells. Nanomaterials were formed by spray deposition and laser patterning of layers of single-walled carbon nanotubes and reduced graphene oxide. Radiation of the first harmonic of a nanosecond ytterbium fiber laser with a wavelength of 1064 nm and power of 0.07 W provided the formation of an electrically conductive framework of nanotubes, reduced graphene oxide and their hybrid structures, which was demonstrated by scanning electron microscopy and Raman spectroscopy. It is shown that laser exposure provided an increase in electrical conductivity from 1.2 to 3.5 times (up to 37.8±1.2 mS for hybrid structures from single-walled carbon nanotubes and reduced graphene oxide). The specified topologies from carbon frame nanomaterials were formed for their use as neurointerfaces with the generator of electrical pulses on the basis of a tablet for cell cultivation. Electrical stimulation in the process of cultivation provides an increase in the number of cells. An increase in the number of cells by 4.3 times for fibroblasts and 2.9 times for neural tissue cells grown on carbon frame nanomaterials compared to cells grown under conventional conditions was obtained. Formed carbon frame nanomaterials are promising for transmission of electrical signals in cell culture devices and other implantable devices, including neurointerfaces. Keywords: carbon nanotubes, reduced graphene oxide, bioelectronics, neural interfaces, electrical stimulation.
  1. S.H. Ku, M. Lee, C.B. Park. Adv. Healthcare Mater., 2 (2), 244 (2013). https://doi.org/10.1002/adhm.201200307
  2. C. Satishkumar, P.J. Thomas, A. Govindaraj, C.N.R. Rao. Appl. Phys. Lett., 77, 2530 (2000). https://doi.org/10.1063/1.1319185
  3. M. Terrones, F. Banhart, N. Grobert, J.C. Charlier, H. Terrones, P.M. Ajayan. Phys. Rev. Lett., 89, 075505 (2002). https://doi.org/10.1103/PhysRevLett.89.075505
  4. J. Kim, G.G. Kim, S. Kim, W. Jung. Appl. Phys. Lett., 108, 203110 (2016). https://doi.org/10.1063/1.4952397
  5. G. Ho, A. Wee, J. Lin. Appl. Phys. Lett., 79, 260 (2001). https://doi.org/10.1063/1.1383279
  6. J. Han, M.P. Anantram, R.L. Jaffe, J. Kong, H. Dai. Phys. Rev. B, 57 (23), 14983 (1998). https://doi.org/10.1103/PhysRevB.57.14983
  7. M. David-Pur, L. Bareket-Keren, G. Beit-Yaakov, D. Raz-Prag, Y. Hanein. Biomed. Microdevices, 16, 43 (2014). DOI: 10.1007/s10544-013-9804-6
  8. B.C. Kang, T.J. Ha. Jpn. J. Appl. Phys., 57 (5S), 05GD02 (2018). DOI: 10.7567/JJAP.57.05GD02
  9. Y. Qiao, X. Li, T. Hirtz, G. Deng, Y. Wei, M. Li, S. Ji, Q. Wu, J. Jian, F. Wu, Y. Shen, H. Tian, Y. Yang, T.L. Ren. Nanoscale, 11 (41), 18923 (2019). DOI: 10.1039/C9NR05532K
  10. Q.L. Zhao, Z.M. Wang, J.H. Chen, S.Q. Liu, Y.K. Wang, M.Y. Zhang, J.-J. Di, G.-P. He, L. Zhao, T.-T. Su, J. Zhang, X. Liang, W.-L. Song, Z.L. Hou. Nanoscale, 13 (24), 10798 (2021). DOI: 10.1039/D0NR08032B
  11. A. Kuksin, D. Murashko, A. Gerasimenko. Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), IEEE, 250 (2022). DOI: 10.1109/CSGB56354.2022.9865613
  12. N. Nekrasov, N. Yakunina, V. Nevolin, I. Bobrinetskiy, P. Vasilevsky, A.Y. Gerasimenko. Biomimetics, 6 (4), 66 (2021). DOI: 10.3390/biomimetics6040066
  13. A.Y. Gerasimenko, A.V. Kuksin, Y.P. Shaman, E.P. Kitsyuk, Y.O. Fedorova, D.T. Murashko, A.A. Shamanaev, E.M. Eganova, A.V. Sysa, M.S. Savelyev, D.V. Telyshev, A.A. Pavlov, O.E. Glukhova. Nanomaterials, 12 (16), 2812 (2022). DOI: 10.3390/nano12162812
  14. A.Yu. Gerasimenko, E. Kitsyuk, U.E. Kurilova, I.A. Suetina, L. Russu, M.V. Mezentseva, A. Markov, A.N. Narovlyansky, S. Kravchenko, S.V. Selishchev, O.E. Glukhova. Polymers, 14 (9), 1866 (2022). DOI: 10.3390/polym14091866
  15. A.Y. Gerasimenko, A.V. Kuksin, Y.P. Shaman, E.P. Kitsyuk, Y.O. Fedorova, A.V. Sysa, A.A. Pavlov, O.E. Glukhova. Nanomaterials, 11, 1875 (2021). DOI: 10.3390/NANO11081875
  16. A.Y. Gerasimenko, G.N. Ten, D.I. Ryabkin, N.E. Shcherbakova, E.A. Morozova, L.P. Ichkitidze. Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 227, 117682 (2020). DOI: 10.1016/j.saa.2019.117682
  17. M.S. Savelyev, A.Y. Gerasimenko, P.N. Vasilevsky, Y.O. Fedorova, T. Groth, G.N. Ten, D.V. Telyshev. Anal. Biochem., 598, 113710 (2020). DOI: 10.1016/J.AB.2020.113710
  18. A.Y. Gerasimenko, U.E. Kurilova, M.S. Savelyev, D.T. Murashko, O.E. Glukhova. Compos. Struct., 260, 113517 (2021). DOI: 10.1016/j.compstruct.2020.113517
  19. A.Y. Gerasimenko, U.E. Kurilova, I.A. Suetina, M.V. Mezentseva, A.V. Zubko, M.I. Sekacheva, O.E. Glukhova. Appl. Sci., 11, 8036 (2021). DOI: 10.3390/APP11178036
  20. N.A. Demidenko, A.V. Kuksin, V.V. Molodykh, E.S. Pyankov, L.P. Ichkitidze, V.A. Zaborova, A.A. Tsymbal, S.A. Tkachenko, H. Shafaei, E. Diachkova, A.Yu. Gerasimenko. Bioeng., 9, 36 (2022). DOI: 10.3390/BIOENGINEERING9010036
  21. Y. Yuan, J. Chen. Laser Phys. Lett., 13 (2016). DOI: 10.1088/1612-2011/13/6/066001
  22. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen. Phys. Rev. Lett., 76, 971 (1996). DOI: 10.1103/PHYSREVLETT.76.971
  23. M. Griffin, S.A. Iqbal, A. Sebastian, J. Colthurst, A. Bayat. PLoS One, 6, e23404 (2011). DOI: 10.1371/journal.pone.0023404
  24. N. Matsuki, M. Takeda, T. Ishikawa, A. Kinjo, T. Hayasaka, Y. Imai, T. Yamaguchi. Oncol. Rep., 23, 1425 (2010). DOI: 10.3892/OR_00000780/HTML

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru