Synthesis and research of carbon and palladium-based composites
Churilov G. N. 1,2, Isakova V. G. 1, Elesina V. I.1,2, Vnukova N. G. 1,2, Nikolaev N. S.1, Tomashevich E. V. 1,3, Glushenko G. A.1, Lopatin V. A.1
1Kirensky Institute of Physics, FSBSI "Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
2Siberian Federal University, Institute of Engineering Physics and Radio Electronics, Krasnoyarsk, Russia
3Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, FSBSI "Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
Email: churilov@iph.krasn.ru, i.vik70@yandex.ru, elesinav83@gmail.com, nata_hd@rambler.ru, a6rukoc@yandex.ru, yetomash@gmail.com, gary-gl@mail.ru, vllopatin@yandex.ru

PDF
In the present work, we report the synthesis of nanosized palladium/carbon powder in an alternating current arc discharge plasma (66 kHz) and the production of composite materials based on it through thermal oxidation in a flow of argon containing 20 wt.% oxygen. Using methods such as transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray phase analysis, X-ray fluorescence analysis, powder X-ray diffraction, differential thermal analysis, and Raman scattering, we conducted the identification of substances in the samples. We also investigated the morphology, elemental, structural and phase composition, chemical and electronic state of atoms on the surface of the obtained samples, as well as the stoichiometric and structural changes that occurred during the thermal oxidation process. The results of cyclic voltammetry studies of ethanol oxidation reactions in alkaline electrolyte on graphite electrodes coated with composite palladium/carbon powders were presented, allowing for a comparison of their electrochemical behaviour depending on the composition of the composite. The behaviour of the samples in the electrochemical oxidation reaction of ethanol in an alkaline electrolyte was recorded by monitoring the current changes in the peak potential region during the experiment. In particular, it was shown that a multiple increase in the peak current value was demonstrated by a sample containing a mixture of Pd/PdO2. Keywords: nanoparticles, composite palladium/carbon materials, thermal oxidation, electrochemical properties, electrode materials.
  1. L. Huang, L. Geng, H. Peng. Progr. Mater. Sci., 71 (10), 93 (2015). DOI: 10.1016/j.pmatsci.2015.01.002
  2. G. Balaganesan, V.C. Khan. Compos B Eng., 98, 39 (2016). DOI: 10.1016/j.compositesb.2016.04.083
  3. S. Guinard, O. Allix, D. Gue dra-Degeorges, A. Vinet. Compos. Sci. Technol., 62 (4), 585 (2002). DOI: 10.1016/S0266-3538(01)00153-1
  4. N.M. Nurazzi, M.R.M. Asyraf, S.F. Athiyah, S.S. Shazleen, S.A. Rafiqah, M.M. Harussani, S.H. Kamarudin, M.R. Razman, M. Rahmah, E.S. Zainudin, R.A. Ilyas, H.A. Aisyah, M.N.F. Norrrahim, N. Abdullah, S.M. Sapuan, A. Khalina. Polymers, 13, 2170 (2021). DOI: 10.3390/polym13132170
  5. R. Yahaya, S.M. Sapuan, M. Jawaid, Z. Leman, E.S. Zainudin. Def. Technol., 12 (1), 52 (2016). DOI: 10.1016/j.dt.2015.08.005
  6. H. Han, H. Sun, F. Lei, J. Huang, S. Lyu, B. Wu, M. Yang, C. Zhang, D. Li, Z. Zhang, D. Sun. ES Mater. Manuf., 15, 53 (2021). DOI: 10.30919/esmm5f523
  7. B. Zhao, L. Liang, Z. Bai, X. Guo, R. Zhang, Q. Jiang, Z. Guo. ES Energy Environ, 14, 79 (2021). DOI: 10.30919/esee8c488
  8. M.M. Harussani, S.M. Sapuan, G. Nadeem, T. Rafin, W. Kirubaanand. Defence Technol., 18 (8), 1281 (2022). DOI: 10.1016/j.dt.2022.03.006
  9. S.M. Manocha. Sadhana, 28, 335 (2003). DOI: 10.1007/BF02717142
  10. E. Perez-Mayoral, I. Matos, M. Bernardo, I.M. Fonseca. Catalysts, 9 (2), 133 (2019). DOI: 10.3390/catal9020133
  11. E. Lam, J.H.T. Luong. ACS Catal., 4 (10), 3393 (2014). DOI: 10.1021/cs5008393
  12. J.C. Ndamanisha, L.-P. Guo. Analyt. Chim. Acta., 747, 19 (2012). DOI: 10.1016/j.aca.2012.08.032
  13. J. Zhang, M. Terrones, C.R. Park, R. Mukherjee, M. Monthioux, N. Koratkar, Y.S. Kim, R. Hurt, E. Frackowiak, T. Enoki, Y. Chen, Y. Chen, A. Bianco. Carbon, 98, 708 (2016). DOI: 10.1016/j.carbon.2015.11.060
  14. P. Veerakumar, K.-C. Lin. Chemosphere, 253, 126750 (2020). DOI: 10.1016/j.chemosphere.2020.126750
  15. Y.-H. Chen, W.-F. Luo, J.-A. Chen, J. Wang. Chin. J. Chem. Phys., 32, 218 (2019). DOI: 10.1063/1674-0068/cjcp1812301
  16. A. Cabiac, T. Cacciaguerra, P. Trens, R. Durand, G. Delahay, A. Medevielle, D. Plee, B. Coq. Appl. Catalysis A: General, 340 (2), 229 (2008). DOI: 10.1016/j.apcata.2008.02.018
  17. M. Rabchinskii, V.V. Sysoev, O.E. Glukhova, M. Brzhezinskaya, D.Yu. Stolyarova, A.S. Varezhnikov, M.A. Solomatin, P.V. Barkov, D.A. Kirilenko, S.I. Pavlov, M.V. Baidakova, V. Shnitov, N.S. Struchkov, D.Yu. Nefedov, A. Antonenko, P. Cai, Z. Liu, P. Brunkov. Adv. Mater. Technol., 7 (7), 2101250 (2022). DOI: 10.1002/admt.202101250
  18. M.K. Rabchinskii, V.V. Sysoev, A.S. Varezhnikov, M.A. Solomatin, N.S. Struchkov, D.Yu. Stolyarova, S.A. Ryzhkov, G.A. Antonov, V.S. Gabrelian, P.D. Cherviakova, M.V. Baidakova, A.O. Krasnova, M. Brzhezinskaya, S.I. Pavlov, D.A. Kirilenko, V.A. Kislenko, S.V. Pavlov, S.A. Kislenko, P.N. Brunkov. ACS Appl. Mater. Interfaces, 15 (23), 28370 (2023). DOI: 10.1021/acsami.3c02833
  19. W. Dong, S. Cheng, C. Feng, N. Shang, S. Gao, C. Wang. Catalysis Commun., 90, 70 (2017). DOI: 10.1016/j.catcom.2016.11.021
  20. M. Lusi, H. Erikson, M. Merisalu, M. Rahn, V. Sammelselg, K. Tammeveski. J. Electroanalyt. Chem., 834, 223 (2019). DOI: 10.1016/j.jelechem.2018.12.061
  21. D.P. Chen, X.C. Liu, X. Liu, L. Yuan, M.L. Zhong, C.Y. Wang. Intern. J. Hydrogen Energy, 46 (59), 30455 (2021). DOI: 10.1016/j.ijhydene.2021.06.167
  22. A.M. Sheikh, E.L. Silva, L. Moares, L.M. Antonini, M.Y. Abellah, C.F. Malfatti. American J. Mining Metallurgy, 2 (4), 64 (2014). DOI: 10.12691/ajmm-2-4-1
  23. O.A. Hjortsh j Schreyer, J. Quinson, M. Escudero-Escribano. Inorganics, 8 (11), 59 (2020). DOI: 10.3390/inorganics8110059
  24. B. Chen, D. Chao, E. Liu, M. Jaroniec, N. Zhao, S.-Z. Qiao. Energy Environ. Sci., 13, 1096 (2020). DOI: 10.1039/c9ee03549d
  25. W. Chen, W. Wu, Z. Pan, X. Wu, H. Zhang. J. Alloys Compd., 763, 257 (2018). DOI: 10.1016/j.jallcom.2018.05.301
  26. M. Najem, A.A. Nada, M. Weber, S. Sayegh, A. Razzouk, C. Salameh, C. Eid, M. Bechelany. Materials, 13 (8), 1947 (2020). DOI: 10.3390/ma13081947
  27. O.A. Cano, C.A.R. Gonzalez, J.F.H. Paz, P.A. Madrid, P.E.G. Casillas, A.L.M. Hernandez, C.A.M. Perez. Catal. Today, 282 (2), 168 (2017). DOI: 10.1016/j.cattod.2016.06.053
  28. L. Minati, K.F. Aguey-Zinsou, V. Micheli, G. Speranza. Dalton Transactions, 47 (41), 14573 (2018). DOI: 10.1039/C8DT02839G
  29. A. Chen, C. Ostrom. Chem. Rev., 115 (21), 11999 (2015). DOI: 10.1021/acs.chemrev.5b00324
  30. A.J.M. Mackus, M.J. Weber, N.F.W. Thissen, D. Garcia-Alonso, R.H.J. Vervuurt, S. Assali, A.A. Bol, M.A. Verheijen, W.M.M. Kessels. Nanotechnology, 27 (3), 034001 (2016). DOI: 10.1088/0957-4484/27/3/034001
  31. C.H. Moon, N.V. Myung, E.D. Haberer. Appl. Phys. Lett., 105, 223102 (2014). DOI: 10.1063/1.4903245
  32. Z. Bai, L. Niu, S. Chao, H. Yan, Q. Cui, L. Yang, J. Qiao, K. Jiang. Int. J. Electrochem. Sci., 8 (7), 10068 (2013). DOI: 10.1016/S1452-3981(23)13032-X
  33. X. Yang, M. Zhen, G. Li, X. Liu, X. Wang, C. Shu, L. Jiang, C. Wang. J. Mater. Chem. A, 28 (1), 8105 (2013). DOI: 10.1039/C3TA11907F
  34. C. Wang, F. Yang, W. Yang, L. Ren, Y. Zhang, X. Jia, L. Zhang, Y. Li. RSC Adv., 35 (5), 27526 (2015). DOI: 10.1039/C4RA16792A
  35. W. Zhao, T. Wang, B. Wang, R. Wang, Y. Xia, M. Liu, L. Tian. Colloids Surf. A: Physicochem. Eng. Aspects, 658, 130677 (2023). DOI: 10.1016/j.colsurfa.2022.130677
  36. C.J. Crawford, Y. Qiao, Y. Liu, D. Huang, W. Yan, P.H. Seeberger, S. Oscarson, S. Chen. Organic Process Research \& Development, 25 (7), 1573 (2021). DOI: 10.1021/acs.oprd.0c00536
  37. N.A. Faddeev, A.B. Kuriganova, I.N. Leontyev, N.V. Smirnova. Dokl. RAN, Khimiya, nauki o materialakh, 507 (1), 59 (2022).(in Russian) DOI: 10.31857/S2686953522600441
  38. O.E. Gudko, N.V. Smirnova, T.A. Lastovina, V.E. Guterman. Nanotechnol. Russ., 4 (5-6), 309 (2009). DOI: 10.1134/S1995078009050085
  39. W. Zhai, L. Bai, R. Zhou, X. Fan, G. Kang, Y. Liu, K. Zhou. Adv. Sci., 8 (11), 2003739 (2021). DOI: 10.1002/advs.202003739
  40. H.H.P. Yiu, I.J. Bruce, F. McGuinness, P.A. Wright. In: Studies in Surface Science and Catalysis, ed. by S.-E. Park, R. Ryoo, W.-S. Ahn, C.W. Lee, J.-S. Chang (Elsevier, 2003), p. 146, 57. DOI: 10.1016/S0167-2991(03)80326-9
  41. A.A. Khouya, H. Ba, W. Baaziz, J.-M. Nhut, A. Rossin, S. Zafeiratos, O. Ersen, G. Giambastiani, V. Ritleng, C. Pham-Huu. ACS Appl. Nano Mater., 4 (2), 2265 (2021). DOI: 10.1021/acsanm.1c00002
  42. E. Tsushima, N. Suzuki. (Patent EP 1 055 650, 2000) https://patentimages.storage.googleapis.com/61/60/97 /a6f46b78d43eb3/EP1055650A1.pdf
  43. J. Shi, X. Hu, J. Zhang, W. Tang, H. Li, X. Shen, N. Saito. Progr. Natural Sci.: Mater. Intern., 24 (6), 593 (2014). DOI: 10.1016/j.pnsc.2014.10.011
  44. G.N. Churilov, W. Kratschmer, I.V. Osipova, G.A. Glushenko, N.G. Vnukova, A.L. Kolonenko, A.I. Dudnik. Carbon, 62, 389 (2013). DOI: 10.1016/j.carbon.2013.06.022
  45. M.J. Weber, A.J. Mackus, M.A. Verheijen, C. van der Marel, W.M. Kessels. Chem. Mater., 24 (15), 2973 (2012). DOI: 10.1021/cm301206e
  46. V.I. Elesina, G.N. Churilov, N.G. Vnukova, N.S. Nikolaev, G.A. Glushenko, V.G. Isakova. Fullerenes, Nanotubes and Carbon Nanostructures, 30 (5), 553 (2022). DOI: 10.1080/1536383X.2021.1966421
  47. G.N. Churilov, V.I. Elesina. Ustroistvo dlya razdeleniya veshchestva na rastvorimuyu i nerastvorimuyu tchasti (Patent RU 2744434, 2021), (in Russian) https://findpatent.ru/patent/274/2744434.html
  48. P.K. Gallagher, M.E. Gros. J. Thermal Analysis, 31, 1231 (1986). DOI: 10.1007/bf01914636
  49. B. Lesiak, B. Mierzwa, P. Jiricek, I. Bieloshapka, K. Juchniewicz, A. Borodzinski. Appl. Surf. Sci., 458, 855 (2018). DOI: 10.1016/j.apsusc.2018.07.137
  50. L.S. Kibis, A.I. Titkov, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin. Appl. Surf. Sci., 255, 9248 (2009). DOI: 10.1016/j.apsusc.2009.07.011
  51. M. Brzhezinskaya, I.V. Mishakov, Y.I. Bauman, Y.V. Shubin, T. A. Maksimova, V.O. Stoyanovskii, E.Yu. Gerasimov, A.A. Vedyagin. Appl. Surf. Sci., 590, 153055 (2022). DOI: 10.1016/j.apsusc.2022.153055
  52. T. Kumari, R. Gopal, A. Goyal, J. Joshi. J. Inorganic and Organometallic Polymers and Mater., 29, 316 (2019). DOI: 10.1007/s10904-018-1001-x
  53. M. Schwarzer, N. Hertl, F. Nitz, D. Borodin, J. Fingerhut, T.N. Kitsopoulos, A.M. Wodtke. J. Phys. Chem. C, 126 (34), 14500 ( 2022). DOI: 10.1021/acs.jpcc.2c04567
  54. F. Chekin. Bull. Mater. Sci., 38 (4), 887 (2015). DOI: 10.1007/s12034-015-0954-4

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru