Memristor nanostructures based on the bigraphene/diamane phase transition
G.N. Panin 1, E.V. Emelin 1, O.O. Kapitanova 2,3, V.I. Korepanov 1, L.A. Varlamova 4, D.O. Klimchuk 4, S.V. Erokhin 4, K.V. Larionov 4, P.B. Sorokin 1,4
1Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia
2Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
3Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow, Russia
4Laboratory of Digital Materials Science, National University of Science and Technology MISIS, Moscow, Russia
Email: panin@iptm.ru

PDF
Carbon nanostructures based on a local structural phase transition bigraphene/diamane obtained by transferring two graphene layers onto a La3Ga5SiO14 substrate and irradiating them with an electron beam through a polymethyl methacrylate layer are studied. Irradiation of the structure led to local functionalization of bigraphene with oxygen and hydrogen with the formation of sp3- bonds and a bigraphene-diamane phase transition, which was previously predicted theoretically. Changes in the intensity and position of peaks in the Raman spectra of irradiated bigraphene and an increase in its resistance indicate a local phase transition. Theoretical calculations of the modified bigraphene structure on La3Ga5SiO14 and experimental measurements of the proportion of sp3-hybridized carbon atoms indicate the formation of diamane nanoclusters and the possibility of local formation of nanostructures whose memristive states can be controlled at low currents and bias voltages. Keywords: graphene, diamond monolayer, memristor, electron beam nanotechnology, low-dimensional crystals.
  1. T.P. Morgan. The Next Platform (August 23, 2022), https://www.nextplatform.com/2022/08/23/inside-teslas-innovative-and-homegrown-dojo-ai-supercomputer/
  2. SO UPS data on electricity consumption in the Unified Power System of Russia, Electronic source. Available at: https://www.so-ups.ru/news/press-release/press- release-view/news/17511/
  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Science, 306, 666 (2004). DOI: 10.1126/science.1102896
  4. A.K. Geim, I.V. Grigorieva. Nature, 499, 419 (2013). DOI: 10.1038/nature12385
  5. X. Cai, Y. Luo, B. Liu, H.M. Cheng. Chem. Soc. Rev., 47, 6224 (2018). DOI: 10.1039/C8CS00254A
  6. S. Goossens, G. Navickaite, C. Monasterio, S. Gupta, J.J. Piqueras, R. Perez, G. Burwell, I. Nikitskiy, T. Lasanta, T. Galan, E. Puma, A. Centeno, A. Pesquera, A. Zurutuza, G. Konstantatos, F. Koppens. Nature Photon., 11, 366 (2017). DOI: 10.1038/nphoton.2017.75
  7. Y. Guo, D. Sun, B. Ouyang, A. Raja, J. Song, T.F. Heinz, L.E. Brus. Nano Lett., 15, 5081 (2015). DOI: 10.1021/acs.nanolett.5b01196
  8. K. Nasu. Photoinduced Phase Transitions (World Scientific, Singapore 2004), DOI: 10.1142/5476
  9. B. Peng, H. Zhang, W. Chen, B. Hou, Z-J. Qiu, H. Shao, H. Zhu, B. Monserrat, D. Fu, H. Weng, C.M. Soukoulis. 2D Mater. Appl., 4, 14 (2020). DOI: 10.1038/s41699-020-0147-x
  10. Y. Cheng, A. Nie, Q. Zhang, L-Y. Gan, R. Shahbazian-Yassar, U. Schwingenschlogl. ACS Nano, 8 (11), 11447 (2014). DOI: 10.1021/nn505668c
  11. P. Byrley, M. Liu, R. Yan. Front. Chem., 7, 442 (2019). DOI: 10.3389/fchem.2019.00442
  12. X. Li, L. Tao, Z. Chen, H. Fang, X. S. Li, X. Wang, J.B. Xu, H. Zhu. Appl. Phys. Rev., 4, 021306 (2017). DOI: 10.1063/1.4983646
  13. X. Fu, L. Zhang, H.D. Cho, T.W. Kang, D. Fu, D. Lee, S.W. Lee, L. Li, T. Qi, A.S. Chan, Z.A. Yunusov, G.N. Panin. Small, 15 (45), 1903809 (2019). DOI: 10.1002/smll.201903809
  14. G.N. Panin. Chaos, Solitons and Fractals, 142, 110523 (2021). DOI: 10.1016/j.chaos.2020.110523
  15. C.L. He, F. Zhuge, X.F. Zhou, M. Li, G.C. Zhou, Y.W. Liu, J.Z. Wang, B. Chen, W.J. Su, Z.P. Liu, Y.H. Wu, P. Cui, R.-W. Li. Appl. Phys. Lett., 95, 232101 (2009). DOI: 10.1063/1.3271177
  16. H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.-E. Kim, J.Y. Lee, T.H.Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S.-Y. Choi. Nano Lett., 10, 4381 (2010). DOI: 10.1021/nl101902k
  17. G.N. Panin, O.O. Kapitanova, S.W. Lee, A.N. Baranov, T.W. Kang. Jpn., J. Appl. Phys., 50, 070110 (2011). DOI: 10.3938/jkps.64.1399
  18. O.O. Kapitanova, G.N. Panin, O.V. Kononenko, A.N. Baranov, T.W. Kang. J. Kor. Phys. Soc., 64, 1399 (2014). DOI: 10.3938/jkps.64.1399
  19. O.O. Kapitanova, E.V. Emelin, S.G. Dorofeev, P.V. Evdokimov, G.N. Panin, Y. Lee, S. Lee. J. Mat. Sci. Tech., 38, 237 (2020). DOI: 10.1016/j.jmst.2019.07.042
  20. S. Ghose. IBM J. Research and Development, 63 (6), 3:1 (2019). DOI: 10.1147/JRD.2019.2934048
  21. Z. Hao, G. Chen, B. C. Ooi, K.-L. Tan, M. Zhang. IEEE Transactions on Knowledge and Data Engineering, 27 (7) 1920 (2015). DOI: 10.1109/TKDE.2015.2427795
  22. H. Plattner, A. Zeier. In-Memory Data Management: Technology and Applications (Springer Science \& Business Media, 2012)
  23. S.E. Fatemieh, M.R. Reshadinezhad, N. Taherinejad. IEEE International Symposium on Circuits and Systems (ISCAS) (2022), p. 3115. DOI: 10.1109/ISCAS48785.2022.9937475
  24. S.-G. Ren, A. Dong, L. Yang, Y.-B. Xue, J.-C. Li, Y.-J. Yu, H.-J. Zhou, W.-B. Zuo, Y. Li, W.-M. Cheng, X.-S. Miao. Adv. Mater., 36, 2307218 (2024). DOI: 10.1002/adma.202307218
  25. C. Li, C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z. Wang, J.P. Strachan, M. Barnell, Q. Wu, R.S. Williams, J.J. Yang, Q. Xia. IEEE International Memory Workshop (IMW) (Kyoto, Japan, 2018), p. 1-4. DOI: 10.1109/IMW.2018.8388838
  26. A. Mehonic, A. Sebastian, B. Rajendran, O. Simeone, E. Vasilaki, A.J. Kenyon. Adv. Intell. Syst., 2, 2000085 (2020). DOI: 10.1002/aisy.202000085
  27. L.O. Chua. Nat Electron, 1, 322 (2018). DOI: 10.1038/s41928-018-0074-4
  28. L. Chua. IEEE Transactions on Circuit Theory, 18 (5), 507 (1971). DOI: 10.1109/TCT.1971.1083337
  29. B. Kim, H. Li, Y. Chen. GLSVLSI '24: Proceedings of the Great Lakes Symposium on VLSI 2024 (2024), p. 614. DOI: 10.1145/3649476.3660367
  30. G.N. Panin. Electronics, 11, 619 (2022). DOI: 10.3390/electronics11040619
  31. X. Fu, T. Li, B. Cai, J. Miao, G.N. Panin, X. Ma, J. Wang, X. Jiang, Q. Li, Y. Dong, C. Hao, J. Sun, H. Xu, Q. Zhao, M. Xia, B. Song, F. Chen, X. Chen, W. Lu, W. Hu. Light Sci. Appl., 12, 39 (2023). DOI: 10.1038/s41377-023-01079-5
  32. L.A. Chernozatonskii, P.B. Sorokin, A.G. Kvashnin, D.G. Kvashnin. JETP Lett., 90, 134 (2009). DOI: 10.1134/S0021364009140112
  33. P.V. Bakharev, M. Huang, M. Saxena, S.W. Lee, S.H. Joo, S.O. Park, J. Dong, D.C. Camacho-Mojica, S. Jin, Y. Kwon, M. Biswal, F. Ding, S.K. Kwak, Z. Lee, R.S. Ruoff. Nat. Nanotechnol., 15, 59 (2020). DOI: 10.1038/s41565-019-0582-z
  34. E.V. Emelin, H.D. Cho, V.I. Korepanov, L.A. Varlamova, S.V. Erohin, D.Y. Kim, P.B. Sorokin, G.N. Panin. Nanomaterials, 12, 4408 (2022). DOI: 10.3390/nano12244408
  35. S. Ullah, X. Yang, H.Q. Ta, M. Hasan, A. Bachmatiuk, K. Tokarska, B. Trzebicka, L. Fu, M.H. Rummeli. Nano Res., 14, 3756 (2021)
  36. E.V. Emelin, H.D. Cho, V.I. Korepanov, L.A. Varlamova, D.O. Klimchuk, S.V. Erohin, K.V. Larionov, D.Y. Kim, P.B. Sorokin, G.N. Panin. Nanomaterials, 13, 2978 (2023). DOI: 10.3390/nano13222978

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru