The effect of initial disturbances in the Hagen-Poiseuille impact jet on the intensification of wall heat transfer
Lemanov V. V.1, Lukashov V. V.1, Sharov K. A.
1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: sharov_konstantin@rambler.ru
An experimental study of heat transfer in an impact air jet flowing out of a long round pipe (l/d>100) at low Reynolds numbers of (Re=250-12 000) was made. Three variants of the pipe inlet geometry were studied: sudden contraction, conical confuser, profiled nozzle. Instantaneous and statistical data on local heat transfer were obtained at large distances to the obstacle (h/d=20). Localization of heat transfer for laminar jets in the critical point region was found for three variants of the pipe inlet. Initial conditions with a lower level of disturbances increase the critical Reynolds number and also promote heat transfer intensification in the critical point region. Keywords: Hagen-Poiseuille flow, laminar-turbulent transition, initial conditions, velocity pulsations.
- B.N. Yudaev, M.S. Mikhailov, V.K. Savin, Teploobmen pri vzaimodeistvii strui s pregradami (Mashinostroenie, M., 1977) (in Russian)
- E.P. Dyban, A.I. Mazur, Konvektivnyi teploobmen pri struinom obtekanii tel (Nauk. Dumka, Kiev, 1982) (in Russian)
- F.V. Barbosa, S.F.C.F. Teixeira, J.C.F. Teixeira, Appl. Therm. Eng., 218, 119307 (2023). DOI: 10.1016/j.applthermaleng.2022.119307
- V.V. Lemanov, V.I. Terekhov, High Temp., 54 (3), 454 (2016). DOI: 10.1134/S0018151X1603010X
- V.V. Lemanov, V.I. Terekhov, K.A. Sharov, A.A. Shumeiko, Tech. Phys. Lett., 39 (5), 421 (2013). DOI: 10.1134/S1063785013050064
- V.V. Lemanov, V.V. Lukashov, K.A. Sharov, Tech. Phys. Lett., 50 (3), 33 (2024)
- T. Mullin, Annu. Rev. Fluid Mech., 42, 1 (2011). DOI: 10.1146/annurev-fluid-122109-160652
- S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov, The science and practice of heat flux measurement (Springer Nature, 2020) p. 209
- V.V. Lemanov, V.V. Lukashov, K.A. Sharov, Fluid Dyn., 55 (6), 768 (2020). DOI: 10.1134/S0015462820060087
- C.M. Ho, P. Huerre, Annu. Rev. Fluid Mech., 16, 365 (1984). DOI: 10.1146/annurev.fl.16.010184.002053
- A.S. Ginevsky, Y.V. Vlasov, R.K. Karavosov, Acoustic control of turbulent jets (Springer, 2004)
- C.J. Chang, H. Chen, C. Gau, Nanoscale Microscale Thermophys. Eng., 17 (2), 92 (2013). DOI: 10.1080/15567265.2012.761304
- K. Avila, D. Moxey, A. Lozar, M. Avila, D. Barkley, B. Hof, Science, 333, 192 (2011). DOI: 10.1126/science.1203223
- L. Moruz, J. Kitzhofer, D. Hess, M. Dinulescu, Exp. Therm. Fluid Sci., 105, 316 (2019). DOI: 10.1016/j.expthermflusci.2019.04.001
- J.P. Meyer, J.A. Olivier, Heat Transfer Eng., 35 (14-15), 1246 (2014). DOI: 10.1080/01457632.2013.876793
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.