The effect of initial disturbances in the Hagen-Poiseuille impact jet on the intensification of wall heat transfer
Lemanov V. V.1, Lukashov V. V.1, Sharov K. A. 1
1Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: sharov_konstantin@rambler.ru

PDF
An experimental study of heat transfer in an impact air jet flowing out of a long round pipe (l/d>100) at low Reynolds numbers of (Re=250-12 000) was made. Three variants of the pipe inlet geometry were studied: sudden contraction, conical confuser, profiled nozzle. Instantaneous and statistical data on local heat transfer were obtained at large distances to the obstacle (h/d=20). Localization of heat transfer for laminar jets in the critical point region was found for three variants of the pipe inlet. Initial conditions with a lower level of disturbances increase the critical Reynolds number and also promote heat transfer intensification in the critical point region. Keywords: Hagen-Poiseuille flow, laminar-turbulent transition, initial conditions, velocity pulsations.
  1. B.N. Yudaev, M.S. Mikhailov, V.K. Savin, Teploobmen pri vzaimodeistvii strui s pregradami (Mashinostroenie, M., 1977) (in Russian)
  2. E.P. Dyban, A.I. Mazur, Konvektivnyi teploobmen pri struinom obtekanii tel (Nauk. Dumka, Kiev, 1982) (in Russian)
  3. F.V. Barbosa, S.F.C.F. Teixeira, J.C.F. Teixeira, Appl. Therm. Eng., 218, 119307 (2023). DOI: 10.1016/j.applthermaleng.2022.119307
  4. V.V. Lemanov, V.I. Terekhov, High Temp., 54 (3), 454 (2016). DOI: 10.1134/S0018151X1603010X
  5. V.V. Lemanov, V.I. Terekhov, K.A. Sharov, A.A. Shumeiko, Tech. Phys. Lett., 39 (5), 421 (2013). DOI: 10.1134/S1063785013050064
  6. V.V. Lemanov, V.V. Lukashov, K.A. Sharov, Tech. Phys. Lett., 50 (3), 33 (2024)
  7. T. Mullin, Annu. Rev. Fluid Mech., 42, 1 (2011). DOI: 10.1146/annurev-fluid-122109-160652
  8. S.Z. Sapozhnikov, V.Yu. Mityakov, A.V. Mityakov, The science and practice of heat flux measurement (Springer Nature, 2020) p. 209
  9. V.V. Lemanov, V.V. Lukashov, K.A. Sharov, Fluid Dyn., 55 (6), 768 (2020). DOI: 10.1134/S0015462820060087
  10. C.M. Ho, P. Huerre, Annu. Rev. Fluid Mech., 16, 365 (1984). DOI: 10.1146/annurev.fl.16.010184.002053
  11. A.S. Ginevsky, Y.V. Vlasov, R.K. Karavosov, Acoustic control of turbulent jets (Springer, 2004)
  12. C.J. Chang, H. Chen, C. Gau, Nanoscale Microscale Thermophys. Eng., 17 (2), 92 (2013). DOI: 10.1080/15567265.2012.761304
  13. K. Avila, D. Moxey, A. Lozar, M. Avila, D. Barkley, B. Hof, Science, 333, 192 (2011). DOI: 10.1126/science.1203223
  14. L. Moruz, J. Kitzhofer, D. Hess, M. Dinulescu, Exp. Therm. Fluid Sci., 105, 316 (2019). DOI: 10.1016/j.expthermflusci.2019.04.001
  15. J.P. Meyer, J.A. Olivier, Heat Transfer Eng., 35 (14-15), 1246 (2014). DOI: 10.1080/01457632.2013.876793

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru