Method of estimation of electron extraction coefficient and ion-electron emission coefficient from the grid plasma cathode
Kartavtsov R. A.
1, Mokeev M.A.
1, Vorobyov M.S.
1, Moskvin P.V.
1, Doroshkevich S.Yu.
1, Koval N.N.
1, Grishkov A.A.
1, Devyatkov V.N.
1, Torba M.S.
11Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
Email: kartavtsov@opee.hcei.tsc.ru, mokeevma@opee.hcei.tsc.ru, vorobyovms@yandex.ru, pavelmoskvin@mail.ru, Doroshkevich@opee.hcei.tsc.ru, koval@opee.hcei.tsc.ru, grishkov@to.hcei.tsc.ru, vlad@opee.hcei.tsc.ru, torba@opee.hcei.tsc.ru
The method for estimating the electron extraction coefficient and the ion-electron emission coefficient from the arc discharge plasma in an electron source with a grid plasma cathode is presented. The method is based on the separation of two different scenarios of electron emission development in the case when the arc discharge current generation stops, but under the conditions of continuous flow of ions from the accelerating gap: 1) emission from the plasma cathode is absent; 2) electron emission from the plasma continues when an equipotential space is created in the region of the plasma cathode. This method allows to estimate the contribution of each summand in the total current in the accelerating gap. Keywords: arc discharge, plasma cathode, electron source, open plasma boundary, electron extraction coefficient, ion-electron emission.
- V.E. Gromov, Yu.F. Ivanov, S.V. Vorobiev, S.V. Konovalov, Fatigue of steels modified by high intensity electron beams (Cambridge International Science Publ., 2015)
- M.S. Vorob'ev, S.A. Gamermaister, V.N. Devyatkov, N.N. Koval', S.A. Sulakshin, P.M. Shchanin, Tech. Phys. Lett., 40 (6), 506 (2014). DOI: 10.1134/S1063785014060261
- Silnotochnye impulsnye electronnye pychki dlya aviatsionnogo dvigatelestroeniya, edited by A.S. Novikov, V.A. Shulov, and V.I. Engelko (Dipak, M., 2012). (in Russian)
- V.A. Gruzdev, Y.E. Kreindel, and Y.M. Larin, TVT, 11 (3), 482 (1973). (in Russian)
- M.S. Vorobyov, P.V. Moskvin, V.I. Shin, T.V. Koval, V.N. Devyatkov, N.N. Koval, K.T. Ashurova, S.Yu. Doroshkevich, M.S. Torba, V.A. Levanisov, High. Temp., 60 (4), 438 (2022). DOI: 10.1134/S0018151X22040162
- P.V. Moskvin, M.S. Vorobyov, A.A. Grishkov, M.S. Torba, V.I. Shin, N.N. Koval, S.Yu. Doroshkevich, R.A. Kartavtsov, Tech. Phys. Lett., 49 (6), 38 (2023). DOI: 10.61011/TPL.2023.06.56376.19557
- V.N. Devyatkov, N.N. Koval, P.M. Schanin, V.P. Grigoryev, T.V. Koval, Laser Particle Beams, 21 (2), 243 (2003). DOI: 10.1017/S026303460321212X
- M.S. Vorobyov, P.V. Moskvin, V.I. Shin, N.N. Koval, K.T. Ashurova, S.Yu. Doroshkevich, V.N. Devyatkov, M.S. Torba, V.A. Levanisov, Tech. Phys. Lett., 47, 528 (2021). DOI: 10.1134/S1063785021050291
- B. Szapiro, J.J. Rocca, J. Appl. Phys., 65 (9), 3713 (1989). DOI: 10.1063/1.342600
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.