Bakarov A. K.
1, Sukhanov M. A.
1, Jaroshevich A. S.
1, Loshkarev I. D.
1, Zhuravlev K. S.
11Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: bakarov@isp.nsc.ru, msukhanov@isp.nsc.ru, jarosh@isp.nsc.ru, idl@isp.nsc.ru, zhur@isp.nsc.ru
Focal plane array infrared photodetectors are highly demanded in various fields, including environmental protection, medicine and military applications. This paper presents the results of growing InAs/GaSb superlattice structures using molecular beam epitaxy on GaSb substrates for the mid- and longwave infrared photodetectors. Conditions for growing GaSb buffer layers and superlattices with In-Sb interfacial layer are defined. It is shown that a low arsenic concentration in the buffer layer has little effect on the structural quality of superlattices, while the buffer thickness has a more significant impact. The selected growth conditions allowed for high reproducibility of the superlattice period lengths. The measured superlattice layer thicknesses were close to those specified during the growth. The presence of the InSb interface resulted in good optical properties of the superlattices. High reproducibility of superlattices allowed us to control the longwave absorption edge by shifting it from 5.6 to 9 μm by merely adjusting the thicknesses of the InAs and GaSb layers. Keywords: molecular beam epitaxy, type-II InAs/GaSb superlattices, infrared photodetectors.
- A. Rogalski, P. Martyniuk, M. Kopytko, Appl. Phys. Rev., 4 (3), 31304 (2017). DOI: 10.1063/1.4999077
- D. Ramos, M. Delmas, L. Hoglund, R. Ivanov, L. vZurauskaite, D. Evans, D. Rihtnesberg, L. Bendrot, S. Smuk, A. Smuk, S. Becanovic, S. Almqvist, P. Tinghag, S. Fattala, E. Costard, P.E. Hellstrom, Appl. Phys. Lett., 123 (18), 181102 (2023). DOI: 10.1063/5.0176652
- D. Kwan, M. Kesaria, E.A. Anyebe, D. Huffaker, Infrared Phys. Technol., 116, 103756 (2021). DOI: 10.1016/j.infrared.2021.103756
- D.O. Alshahrani, M. Kesaria, E.A. Anyebe, V. Srivastava, D.L. Huffaker, Adv. Photon. Res., 3 (2), 2100094 (2021). DOI: 10.1002/adpr.202100094
- M. Walther, R. Rehm, J. Schmitz, J. Niemasz, F. Rutz, A. Worl, L. Kirste, R. Scheibner, J. Wendler, J. Ziegler, Proc. SPIE, 7945, 79451N (2011). DOI: 10.1117/12.875159
- Y. Livneh, P.C. Klipstein, O. Klin, N. Snapi, S. Grossman, A. Glozman, E. Weiss, Phys. Rev. B, 86 (23), 235311 (2012). DOI: 10.1103/physrevb.86.235311
- Y. Zhang, W. Ma, Y. Cao, J. Huang, Y. Wei, K. Cui, J. Shao, IEEE J. Quantum Electron., 47 (12), 1475 (2011). DOI: 10.1109/jqe.2011.2168947
- A. Jasik, J. Kubacka-Traczyk, K. Reginski, I. Sankowska, R. Jakie a, A. Wawro, J. Kaniewski, J. Appl. Phys., 110 (7), 73509 (2011). DOI: 10.1063/1.3642995
- A. Jasik, I. Sankowska, K. Reginski, E. Machowska-Podsiad o, A. Wawro, M. Wzorek, R. Kruszka, R. Jakie a, J. Kubacka-Traczyk, M. Motyka, J. Kaniewski, in: Crystal growth: theory, mechanisms and morphology, ed. by J.P. Isaac, N.A. Manusco (Nova Science Publ., Inc., 2012), ch. 9, p. 293--327
- B.J. Spencer, P.W. Voorhees, J. Tersoff, Phys. Rev. B, 64 (23), 235318 (2001). DOI: 10.1103/physrevb.64.235318
- D.C. Look, J.H. Leach, J. Vac. Sci. Technol. B, 34 (4), 04J105 (2016). DOI: 10.1116/1.4954211
- G. Ariyawansa, E. Steenbergen, L.J. Bissell, J.M. Duran, J.E. Scheihing, M.T. Eismann, Proc. SPIE, 9070, 90701J (2014). DOI: 10.1117/12.2057506
- P.-F. Qiao, S. Mou, S.L. Chuang, Opt. Express, 20 (3), 2319 (2012). DOI: 10.1364/oe.20.002319
- H. Katayama, T. Takekawa, M. Kimata, H. Inada, Y. Iguchi, Infrared Phys. Technol., 70, 53 (2015). DOI: 10.1016/j.infrared.2014.10.014
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.