Analysis and control of terahertz radiation parameters in the CoFeB/(Pt, W, Ta) structures
Gorbatova A.V.1, Avdeev P. Yu.1, Levedeva E.D.1, Burjakov A. M.1, Bezvikonny N.V.1, Tirselen N2, Preobrazhensky V. L.1,3, Mishina E. D.1
1MIREA - Russian Technological University, Moscow, Russia
2University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, Lille, France
3Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: gorbatova@mirea.ru

PDF
This paper presents the results of studying a series of spintronic terahertz emitters based on bilayer structures consisting of layers of ferromagnetic Co20Fe60B20 and heavy metals Pt, W, and Ta. The structures were fabricated in one and the same process cycle on a common substrate. The results confirm that the mechanism of terahertz generation in the investigated series is related to the inverse spin Hall effect. It is shown that the terahertz emitter with a non-magnetic Pt layer produces terahertz radiation with an amplitude an order of magnitude higher than that in structures based on W and Ta, which is due to a larger spin Hall angle. In addition, the study has demonstrated the possibility of controllable manipulation of the terahertz radiation polarization in the developed series by using external magnetic field applied in the direction of the hard magnetization axis. Keywords: terahertz radiation, spintronic emitter, inverse spin Hall effect, spin Hall angle, magnetic anisotropy.
  1. Y. Peng, C. Shi, X. Wu, Y. Zhu, S. Zhuang, BME Front., 2020, 2547609 (2020). DOI: 10.34133/2020/2547609
  2. W. Jiang, Q. Zhou, J. He, M.A. Habibi, S. Melnyk, M. El-Absi, B. Han, M. Di Renzo, H.D. Schotten, F.L. Luo, T.S. El-Bawab, M. Juntti, M. Debbah, V.C.M. Leung, IEEE Commun. Surv. Tutorials, Early Access, 1 (2024). DOI: 10.1109/COMST.2024.3385908
  3. K. Ahi, S. Shahbazmohamadi, N. Asadizanjani, Opt. Lasers Eng., 104, 274 (2018). DOI: 10.1016/j.optlaseng.2017.07.007
  4. T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Notzold, S. Mahrlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blugel, M. Wolf, Nat. Nanotechnol., 8 (4), 256 (2013). DOI: 10.1038/nnano.2013.43
  5. R. Rouzegar, L. Brandt, L. Nadvorni k, D.A. Reiss, A.L. Chekhov, O. Gueckstock, C. In, M. Wolf, T.S. Seifert, P.W. Brouwer, G. Woltersdorf, Phys. Rev. B, 106 (14), 144427 (2022). DOI: 10.1103/PhysRevB.106.144427
  6. A.N. Yurasov, D.A. Sayfulina, T.N. Bakhvalova, Russ. Technol. J., 12 (2), 57 (2024). DOI: 10.32362/2500-316X-2024-12-2-57-66 (in Russian)
  7. T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Nat. Photon., 10 (7), 483 (2016). DOI: 10.1038/nphoton.2016.91
  8. J. Pettine, P. Padmanabhan, N. Sirica, R.P. Prasankumar, A.J. Taylor, H.T. Chen, Light Sci. Appl., 12 (1), 133 (2023). DOI: 10.1038/s41377-023-01163-w
  9. C. Bull, S.M. Hewett, R. Ji, C.-H. Lin, T. Thomson, D.M. Graham, P.W. Nutter, APL Mater., 9 (9), 090701 (2021). DOI: 10.1063/5.0057511
  10. A.M. Buryakov, A.V. Gorbatova, P.Y. Avdeev, E.D. Lebedeva, K.A. Brekhov, A.V. Ovchinnikov, N.S. Gusev, E.A. Karashtin, M.V. Sapozhnikov, E.D. Mishina, N. Tiercelin, V.L. Preobrazhensky, Appl. Phys. Lett., 123 (8), 082404 (2023). DOI: 10.1063/5.0160497
  11. D. Khusyainov, S. Ovcharenko, M. Gaponov, A. Buryakov, A. Klimov, N. Tiercelin, P. Pernod, V. Nozdrin, E. Mishina, A. Sigov, V. Preobrazhensky, Sci. Rep., 11 (1), 697 (2021). DOI: 10.1038/s41598-020-80781-5
  12. M. Chen, Y. Wu, Y. Liu, K. Lee, X. Qiu, P. He, J. Yu, H. Yang, Adv. Opt. Mater., 7 (4), 1801608 (2018). DOI: 10.1002/adom.201801608
  13. G. Torosyan, S. Keller, L. Scheuer, R. Beigang, E.T. Papaioannou, Sci. Rep., 8 (1), 1311 (2018). DOI: 10.1038/s41598-018-19432-9
  14. E.T. Papaioannou, R. Beigang, Nanophotonics, 10 (4), 1243 (2021). DOI: 10.1515/nanoph-2020-0563
  15. E. Beaurepaire, G.M. Turner, S.M. Harrel, M.C. Beard, J.Y. Bigot, C.A. Schmuttenmaer, Appl. Phys. Lett., 84 (18), 3465 (2004). DOI: 10.1063/1.1737467
  16. A.M. Buryakov, A.V. Gorbatova, P.Yu. Avdeev, N.V. Bezvikonny, S.V. Ovcharenko, A.A. Klimov, K.L. Stankevich, E.D. Mishina, Tech. Phys. Lett., 48 (9), 56 (2022). DOI: 10.21883/TPL.2022.09.55084.19246]
  17. N. Kumar, R.W.A. Hendrikx, A.J.L. Adam, P.C.M. Planken, Opt. Express, 23 (11), 14252 (2015). DOI: 10.1364/OE.23.014252
  18. F.A. Zaynullin, D.I. Khusyainov, M.V. Kozintseva, A.M. Buryakov, Russ. Technol. J., 10 (3), 74 (2022). DOI: 10.32362/2500-316X-2022-10-3-74-84 (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru