Analysis of Zn diffusion process from the vapor phase in InGaAs/InP materials
Kopytov P. E. 1, Starkov I.A. 1, Novikov I. I. 1, Blokhin S. A. 2, Papylev D. S. 1, Levin R. V.2, Andryushkin V. V. 1, Kovach Ya N. 2, Nikitina E. V. 3, Voropaev K. O. 4, Karachinsky L. Ya. 1
1ITMO University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
4OAO OKB-Planeta, Veliky Novgorod, Russia
Email: kopytovpe@itmo.ru, starkov@itmo.ru, innokenty.novikov@itmo.ru, blokh@mail.ioffe.ru, dspapylev@itmo.ru, vvandriushkin@itmo.ru, j-n-kovach@itmo.ru, lkarachinsky@itmo.ru

PDF
A physical approach has been developed to simulate the process of zinc diffusion into InGaAs/InP heterostructures from metalorganic diethylzinc source in a metal-organic chemical vapor deposition reactor. The results of numerical calculations based on the proposed model showed compliance with experimental data on the distribution of electrically active dopants in InGaAs/InP heterostructures obtained by capacitance-voltage profiling. Effective diffusion coefficients in InGaAs/InP materials and their dependences on temperature and pressure have been established. The nonlinear coordinate dependences of the segregation coefficient, unique for each technological process, are determined. Comparison with scanning electron microscopy data of a two-dimensional diffusion profile demonstrated the isotropy of diffusion processes for InGaAs/InP. Keywords: Diffusion, diethylzinc, dopant, segregation, indium phosphide.
  1. F. Ceccarelli, G. Acconcia, A. Gulinatti, I. Rech, R. Osellame, Adv. Quantum Technol., 4 (2), 2000102 (2021). DOI: 10.1002/qute.202000102
  2. D.-H. Jun, H.-Y. Jeong, Y. Kim, C.-S. Shin, K.H. Park, W.-K. Park, M.-S. Kim, S. Kim, S.W. Han, S. Moon, J. Korean Phys. Soc., 69 (8), 1341 (2016). DOI: 10.3938/jkps.69.1341
  3. K. Lee, K. Yang, IEEE Photon. Technol. Lett., 26 (10), 999 (2014). DOI: 10.1109/LPT.2014.2312022
  4. Y. Chen, Z. Zhang, G. Miao, H. Jiang, H. Song, Phys. Status Solidi A, 219 (2), 2100577 (2022). DOI: 10.1002/pssa.202100577
  5. V.V. Preobrazhenskii, I.B. Chistokhin, M.A. Putyato, N.A. Valisheva, E.A. Emelyanov, M.O. Petrushkov, A.S. Pleshkov, I.G. Neizvestny, I.I. Ryabtsev, Optoelectron. Instrum. Data Process., 57 (5), 485 (2021). DOI: 10.3103/S8756699021050125
  6. J. Wisser, M. Glade, H.J. Schmidt, H. Heime, J. Appl. Phys., 71 (7), 3234 (1992). DOI: 10.1063/1.350969
  7. D. Franke, F.W. Reier, N. Grote, J. Cryst. Growth, 195 (1-4), 112 (1998). DOI: 10.1016/S0022-0248(98)00628-9
  8. C.-H. Chen, U.M. Gosele, T.Y. Tan, Appl. Phys. A, 68 (1), 9 (1999). DOI: 10.1007/s003390050847
  9. R. Gafiteanu, H.-M. You, U. Goesele, T.Y. Tan, MRS Online Proc. Library, 318, 31 (1993). DOI: 10.1557/PROC-318-31
  10. O.V. Aleksandrov, A.A. Krivoruchko, Kondens. Sredy Mezhfaznye Granitsy, 7 (2), 109 (2005) (in Russian). http://www.kcmf.vsu.ru/resources/t_07_2_2005_001.pdf
  11. B. Tuck, J. Phys. D: Appl. Phys., 18 (4), 557 (1985). DOI: 10.1088/0022-3727/18/4/002
  12. K. Vanhollebeke, M. D'Hondt, I. Moerman, P. Van Daele, P. Demeester, J. Electron. Mater., 30 (8), 951 (2001). DOI: 10.1007/BF02657716
  13. T. Kitatani, K. Okamoto, K. Uchida, S. Tanaka, J. Cryst. Growth, 479, 41 (2017). DOI: 10.1016/j.jcrysgro.2017.09.017
  14. G.J. Van Gurp, T. Van Dongen, G.M. Fontijn, J.M. Jacobs, D.L.A. Tjaden, J. Appl. Phys., 65 (2), 553 (1989). DOI: 10.1063/1.343140
  15. A. Van Geelen, T.M.F. De Smet, T. Van Dongen, W.M.E.M. Van Gils, J. Cryst. Growth, 195 (1-4), 79 (1998). DOI: 10.1016/S0022-0248(98)00628-9
  16. C.A. Hampel, C. Blaauw, J.E. Haysom, R. Glew, I.D. Calder, S. Guillon, T. Bryskiewicz, N. Puetz, J. Vac. Sci. Technol. A, 22 (3), 916 (2004). DOI: 10.1116/1.1640392
  17. S.A. Blokhin, R.V. Levin, V.S. Epoletov, A.G. Kuzmenkov, A.A. Blokhin, M.A. Bobrov, Y.N. Kovach, N.A. Maleev, N.D. Prasolov, M.M. Kulagina, Yu.A. Guseva, Yu.M. Zadiranov, E.V. Nikitina, V.V. Andryushkin, A.P. Vasil'ev, K.O. Voropaev, V.M. Ustinov, Mater. Phys. Mech., 51 (5), 142 (2023). DOI: 10.18149/MPM.5152023_14
  18. B.S. Bokshtein, Diffusion in Metals (Metallurgy, Moscow, 1978)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru